
Package ‘IRanges’
October 9, 2015

Title Infrastructure for manipulating intervals on sequences

Description The package provides efficient low-level and highly reusable S4
classes for storing ranges of integers, RLE vectors (Run-Length
Encoding), and, more generally, data that can be organized
sequentially (formally defined as Vector objects), as well as views
on these Vector objects.
Efficient list-like classes are also provided for storing big
collections of instances of the basic classes. All classes in
the package use consistent naming and share the same rich and
consistent ``Vector API'' as much as possible.

Version 2.2.9

Author H. Pages, P. Aboyoun and M. Lawrence

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

biocViews Infrastructure, DataRepresentation

Depends R (>= 3.1.0), methods, utils, stats, BiocGenerics (>= 0.13.6),
S4Vectors (>= 0.6.1)

Imports stats4

LinkingTo S4Vectors

Suggests XVector, GenomicRanges, BSgenome.Celegans.UCSC.ce2, RUnit

License Artistic-2.0

ExtraLicenses The following files in the 'src' directory are licensed
for all use by Jim Kent, in a manner compatible with the
Artistic 2.0 license: common.c/h, memalloc.c/h, localmem.c/h,
hash.c/h, errabort.c/h, rbTree.c/h, dlist.c/h, errCatch.h

Collate Vector-class-leftovers.R Hits-class-leftovers.R
List-class-leftovers.R List-comparison.R AtomicList-class.R
Ranges-class.R Ranges-comparison.R IRanges-class.R
IRanges-constructor.R IRanges-utils.R Views-class.R
Grouping-class.R CompressedList-class.R Rle-class-leftovers.R
RleViews-class.R RleViews-utils.R extractList.R seqapply.R
multisplit.R AtomicList-impl.R DataFrame-utils.R
DataFrameList-class.R DataFrameList-utils.R RangesList-class.R

1

2 R topics documented:

GappedRanges-class.R ViewsList-class.R RleViewsList-class.R
RleViewsList-utils.R MaskCollection-class.R RangedData-class.R
FilterRules-class.R RDApplyParams-class.R RangedData-utils.R
HitsList-class.R NCList-class.R IntervalTree-class.R
IntervalTree-utils.R IntervalForest-class.R
RangedSelection-class.R read.Mask.R intra-range-methods.R
inter-range-methods.R reverse-methods.R coverage-methods.R
slice-methods.R setops-methods.R findOverlaps-methods.R
nearest-methods.R expand-methods.R updateObject-methods.R
tile-methods.R mapCoords-methods.R subsetting-internals.R
test_IRanges_package.R debug.R zzz.R

NeedsCompilation yes

R topics documented:
AtomicList . 3
CompressedList-class . 6
coverage-methods . 8
DataFrame-utils . 13
DataFrameList-class . 14
expand . 16
extractList . 17
FilterMatrix-class . 20
FilterRules-class . 20
findOverlaps-methods . 24
GappedRanges-class . 29
Grouping-class . 31
Hits-class-leftovers . 36
HitsList-class . 37
inter-range-methods . 38
IntervalForest-class . 44
IntervalTree-class . 45
intra-range-methods . 47
IRanges-class . 53
IRanges-constructor . 55
IRanges-utils . 58
IRangesList-class . 60
List-class-leftovers . 61
mapCoords-methods . 62
MaskCollection-class . 63
multisplit . 65
NCList-class . 66
nearest-methods . 68
RangedData-class . 71
RangedDataList-class . 77
RangedSelection-class . 78
Ranges-class . 79

AtomicList 3

Ranges-comparison . 84
RangesList-class . 88
rdapply . 90
read.Mask . 93
reverse . 96
Rle-class-leftovers . 97
RleViews-class . 98
RleViewsList-class . 99
seqapply . 100
setops-methods . 102
slice-methods . 104
updateObject-methods . 106
Vector-class-leftovers . 107
view-summarization-methods . 108
Views-class . 111
ViewsList-class . 113

Index 114

AtomicList Lists of Atomic Vectors in Natural and Rle Form

Description

An extension of List that holds only atomic vectors in either a natural or run-length encoded form.

Details

The lists of atomic vectors are LogicalList, IntegerList, NumericList, ComplexList, CharacterList,
and RawList. There is also an RleList class for run-length encoded versions of these atomic vector
types.

Each of the above mentioned classes is virtual with Compressed* and Simple* non-virtual repre-
sentations.

Constructors

LogicalList(..., compress = TRUE): Concatenates the logical vectors in ... into a new
LogicalList. If compress, the internal storage of the data is compressed.

IntegerList(..., compress = TRUE): Concatenates the integer vectors in ... into a new
IntegerList. If compress, the internal storage of the data is compressed.

NumericList(..., compress = TRUE): Concatenates the numeric vectors in ... into a new
NumericList. If compress, the internal storage of the data is compressed.

ComplexList(..., compress = TRUE): Concatenates the complex vectors in ... into a new
ComplexList. If compress, the internal storage of the data is compressed.

CharacterList(..., compress = TRUE): Concatenates the character vectors in ... into a
new CharacterList. If compress, the internal storage of the data is compressed.

4 AtomicList

RawList(..., compress = TRUE): Concatenates the raw vectors in ... into a new RawList. If
compress, the internal storage of the data is compressed.

RleList(..., compress = TRUE): Concatenates the run-length encoded atomic vectors in ...
into a new RleList. If compress, the internal storage of the data is compressed.

FactorList(..., compress = TRUE): Concatenates the factor objects in ... into a new
FactorList. If compress, the internal storage of the data is compressed.

Coercion

as(from, "CompressedSplitDataFrameList"), as(from, "SimpleSplitDataFrameList"):
Creates a CompressedSplitDataFrameList/SimpleSplitDataFrameList instance from an Atom-
icList instance.

as(from, "IRangesList"), as(from, "CompressedIRangesList"), as(from, "SimpleIRangesList"):
Creates a CompressedIRangesList/SimpleIRangesList instance from a LogicalList or logical
RleList instance. Note that the elements of this instance are guaranteed to be normal.

as(from, "NormalIRangesList"), as(from, "CompressedNormalIRangesList"), as(from, "SimpleNormalIRangesList"):
Creates a CompressedNormalIRangesList/SimpleNormalIRangesList instance from a Logi-
calList or logical RleList instance.

as(from, "CharacterList"), as(from, "ComplexList"), as(from, "IntegerList"), as(from, "LogicalList"),
as(from, "NumericList"), as(from, "RawList"), as(from, "RleList"): Coerces an
AtomicList from to another derivative of AtomicList.

as(from, "AtomicList"): If from is a vector, converts it to an AtomicList of the appropriate
type.

Group Generics

AtomicList objects have support for S4 group generic functionality to operate within elements
across objects:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|"

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

AtomicList 5

Other Basic Methods

The AtomicList objects also support a large number of basic methods. Like the group generics
above, these methods perform the corresponding operation on each element of the list separately.
The methods are:

General is.na, duplicated, unique, match, %in%, table, order, sort

Logical !, which, which.max, which.min

Numeric diff, pmax, pmax.int, pmin, pmin.int, mean, var, cov, cor, sd, median, quantile,
mad, IQR

Running Window smoothEnds, runmed. runmean, runsum, runwtsum, runq

Character nchar, chartr, tolower, toupper, sub, gsub

RleList Methods

RleList has a number of methods that are not shared by other AtomicList derivatives.

runLength(x): Gets the run lengths of each element of the list, as an IntegerList.

runValue(x), runValue(x) <- value: Gets or sets the run values of each element of the list, as
an AtomicList.

ranges(x): Gets the run ranges as a RangesList.

Specialized Methods

drop(x): Checks if every element of x is of length one, and, if so, unlists x. Otherwise, an error
is thrown.

unstrsplit(x, sep=""): A fast sapply(x, paste0, collapse=sep). See ?unstrsplit for
the details.

Author(s)

P. Aboyoun

See Also

List for the applicable methods.

Examples

int1 <- c(1L,2L,3L,5L,2L,8L)
int2 <- c(15L,45L,20L,1L,15L,100L,80L,5L)
collection <- IntegerList(int1, int2)

names
names(collection) <- c("one", "two")
names(collection)
names(collection) <- NULL # clear names
names(collection)
names(collection) <- "one"

6 CompressedList-class

names(collection) # c("one", NA)

extraction
collection[[1]] # range1
collection[["1"]] # NULL, does not exist
collection[["one"]] # range1
collection[[NA_integer_]] # NULL

subsetting
collection[numeric()] # empty
collection[NULL] # empty
collection[] # identity
collection[c(TRUE, FALSE)] # first element
collection[2] # second element
collection[c(2,1)] # reversed
collection[-1] # drop first
collection$one

replacement
collection$one <- int2
collection[[2]] <- int1

combining
col1 <- IntegerList(one = int1, int2)
col2 <- IntegerList(two = int2, one = int1)
col3 <- IntegerList(int2)
append(col1, col2)
append(col1, col2, 0)
col123 <- c(col1, col2, col3)
col123

revElements
revElements(col123)
revElements(col123, 4:5)

group generics
2 * col1
col1 + col1
col1 > 2
sum(col1) # equivalent to (but faster than) 'sapply(col1, sum)'
mean(col1) # equivalent to 'sapply(col1, mean)'

CompressedList-class CompressedList objects

Description

Like the SimpleList class defined in the S4Vectors package, the CompressedList class extends the
List virtual class.

CompressedList-class 7

Details

Unlike the SimpleList class, CompressedList is virtual, that is, it cannot be instantiated. Many con-
crete (i.e. non-virtual) CompressedList subclasses are defined and documented in this package (e.g.
CompressedIntegerList, CompressedCharacterList, CompressedRleList, etc...), as well as in other
packages (e.g. GRangesList in the GenomicRanges package, GAlignmentsList in the Genomi-
cAlignments package, etc...). It’s easy for developers to extend CompressedList to create a new
CompressedList subclass and there is generally very little work involved to make this new subclass
fully operational.

In a CompressedList object the list elements are concatenated together in a single vector-like object.
The partitioning of this single vector-like object (i.e. the information about where each original list
element starts and ends) is also kept in the CompressedList object. This internal representation is
generally more memory efficient than SimpleList, especially if the object has many list elements
(e.g. thousands or millions). Also it makes it possible to implement many basic list operations very
efficiently.

Many objects like LogicalList, IntegerList, CharacterList, RleList, etc... exist in 2 flavors: Com-
pressedList and SimpleList. Each flavor is incarnated by a concrete subclass: CompressedLogical-
List and SimpleLogicalList for virtual class LogicalList, CompressedIntegerList and SimpleInte-
gerList for virtual class IntegerList, etc... It’s easy to switch from one representation to the other
with as(x, "CompressedList") and as(x, "SimpleList"). Also the constructor function for
those virtual classes have a switch that lets the user choose the representation at construction time
e.g. CharacterList(..., compress=TRUE) or CharacterList(..., compress=FALSE). See
below for more information.

Constructor

See the List man page in the S4Vectors package for a quick overview of how to construct List
objects in general.

Unlike for SimpleList objects, there is no CompressedList constructor function.

However, many constructor functions for List objects have a switch that lets the user choose be-
tween the CompressedList and SimpleList representation at construction time. For example, a
CompressedCharacterList object can be constructed with CharacterList(..., compress=TRUE).

Accessors

Same as for List objects. See the List man page in the S4Vectors package for more information.

Coercion

All the coercions documented in the List man page apply to CompressedList objects.

Subsetting

Same as for List objects. See the List man page for more information.

Looping and functional programming

Same as for List objects. See ?`List-utils` in the S4Vectors package for more information.

8 coverage-methods

Displaying

When a CompressedList object is displayed, the "Compressed" prefix is removed from the real class
name of the object. See classNameForDisplay in the S4Vectors package for more information
about this.

See Also

• The List class defined and documented in the S4Vectors package for the parent class.

• The SimpleList class defined and documented in the S4Vectors package for an alternative to
CompressedList.

• The CompressedIntegerList class for a CompressedList subclass example.

Examples

Displaying a CompressedList object:
x <- IntegerList(11:12, integer(0), 3:-2, compress=TRUE)
class(x)

The "Simple" prefix is removed from the real class name of the
object:
x

This is controlled by internal helper classNameForDisplay():
classNameForDisplay(x)

coverage-methods Coverage of a set of ranges

Description

For each position in the space underlying a set of ranges, counts the number of ranges that cover it.

Usage

coverage(x, shift=0L, width=NULL, weight=1L, ...)

S4 method for signature 'Ranges'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash"))

S4 method for signature 'RangesList'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash"))

coverage-methods 9

Arguments

x A Ranges, Views, or RangesList object. See ?`coverage-methods` in the Ge-
nomicRanges package for coverage methods for other objects.

shift Specifies how much each range in x should be shifted before the coverage is
computed.

• If x is a Ranges or Views object: shift must be an integer or numeric
vector parallel to x (will get recycled if necessary) and with no NAs.

• If x is a RangesList object: shift must be a numeric vector or list-like
object of the same length as x (will get recycled if necessary). If it’s a
numeric vector, it’s first turned into a list with as.list. After recycling,
each list element shift[[i]] must be an integer or numeric vector parallel
to x[[i]] (will get recycled if necessary) and with no NAs.

A positive shift value will shift the corresponding range in x to the right, and a
negative value to the left.

width Specifies the length of the returned coverage vector(s).
• If x is a Ranges object: width must be NULL (the default), an NA, or a single

non-negative integer. After being shifted, the ranges in x are always clipped
on the left to keep only their positive portion i.e. their intersection with the
[1, +inf) interval. If width is a single non-negative integer, then they’re
also clipped on the right to keep only their intersection with the [1, width]
interval. In that case coverage returns a vector of length width. Otherwise,
it returns a vector that extends to the last position in the underlying space
covered by the shifted ranges.

• If x is a Views object: Same as for a Ranges object, except that, if width is
NULL then it’s treated as if it was length(subject(x)).

• If x is a RangesList object: width must be NULL or an integer vector parallel
to x (i.e. with one element per list element in x). If not NULL, the vector
must contain NAs or non-negative integers and it will get recycled to the
length of x if necessary. If NULL, it is replaced with NA and recycled to the
length of x. Finally width[i] is used to compute the coverage vector for
x[[i]] and is therefore treated like explained above (when x is a Ranges
object).

weight Assigns a weight to each range in x.
• If x is a Ranges or Views object: weight must be an integer or numeric

vector parallel to x (will get recycled if necessary).
• If x is a RangesList object: weight must be a numeric vector or list-like

object of the same length as x (will get recycled if necessary). If it’s a nu-
meric vector, it’s first turned into a list with as.list. After recycling, each
list element weight[[i]] must be an integer or numeric vector parallel to
x[[i]] (will get recycled if necessary).

If weight is an integer vector or list-like object of integer vectors, the coverage
vector(s) will be returned as integer-Rle object(s). If it’s a numeric vector or
list-like object of numeric vectors, the coverage vector(s) will be returned as
numeric-Rle object(s).
Alternatively, weight can also be specified as a single string naming a metadata
column in x (i.e. a column in mcols(x)) to be used as the weight vector.

10 coverage-methods

method If method is set to "sort", then x is sorted previous to the calculation of the
coverage. If method is set to hash, then x is hashed directly to a vector of length
width without previous sorting.
The "hash" method is faster than the "sort" method when x is large (i.e. con-
tains a lot of ranges). When x is small and width is big (e.g. x represents a
small set of reads aligned to a big chromosome), then method="sort" is faster
and uses less memory than method="hash".
Using method="auto" selects the best method based on length(x) and width.

... Further arguments to be passed to or from other methods.

Value

If x is a Ranges or Views object: An integer- or numeric-Rle object depending on whether weight
is an integer or numeric vector.

If x is a RangesList object: An RleList object with one coverage vector per list element in x, and
with x names propagated to it. The i-th coverage vector can be either an integer- or numeric-Rle
object, depending on the type of weight[[i]] (after weight has gone thru as.list and recycling,
like described previously).

Author(s)

H. Pages and P. Aboyoun

See Also

• coverage-methods in the GenomicRanges package for more coverage methods.

• The slice function for slicing the Rle or RleList object returned by coverage.

• The Ranges, RangesList, Rle, and RleList classes.

Examples

A. COVERAGE OF AN IRanges OBJECT

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),

width=c(5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))
coverage(x)
coverage(x, shift=7)
coverage(x, shift=7, width=27)
coverage(x, shift=c(-4, 2)) # 'shift' gets recycled
coverage(x, shift=c(-4, 2), width=12)
coverage(x, shift=-max(end(x)))

coverage(restrict(x, 1, 10))
coverage(reduce(x), shift=7)
coverage(gaps(shift(x, 7), start=1, end=27))

With weights:
coverage(x, weight=as.integer(10^(0:7))) # integer-Rle

coverage-methods 11

coverage(x, weight=c(2.8, -10)) # numeric-Rle, 'shift' gets recycled

B. SOME MATHEMATICAL PROPERTIES OF THE coverage() FUNCTION

PROPERTY 1: The coverage vector is not affected by reordering the
input ranges:
set.seed(24)
x <- IRanges(sample(1000, 40, replace=TRUE), width=17:10)
cvg0 <- coverage(x)
stopifnot(identical(coverage(sample(x)), cvg0))

Of course, if the ranges are shifted and/or assigned weights, then
this doesn't hold anymore, unless the 'shift' and/or 'weight'
arguments are reordered accordingly.

PROPERTY 2: The coverage of the concatenation of 2 Ranges objects 'x'
and 'y' is the sum of the 2 individual coverage vectors:
y <- IRanges(sample(-20:280, 36, replace=TRUE), width=28)
stopifnot(identical(coverage(c(x, y), width=100),

coverage(x, width=100) + coverage(y, width=100)))

Note that, because adding 2 vectors in R recycles the shortest to
the length of the longest, the following is generally FALSE:
identical(coverage(c(x, y)), coverage(x) + coverage(y)) # FALSE

It would only be TRUE if the 2 coverage vectors we add had the same
length, which would only happen by chance. By using the same 'width'
value when we computed the 2 coverages previously, we made sure they
had the same length.

Because of properties 1 & 2, we have:
x1 <- x[c(TRUE, FALSE)] # pick up 1st, 3rd, 5th, etc... ranges
x2 <- x[c(FALSE, TRUE)] # pick up 2nd, 4th, 6th, etc... ranges
cvg1 <- coverage(x1, width=100)
cvg2 <- coverage(x2, width=100)
stopifnot(identical(coverage(x, width=100), cvg1 + cvg2))

PROPERTY 3: Multiplying the weights by a scalar has the effect of
multiplying the coverage vector by the same scalar:
weight <- runif(40)
cvg3 <- coverage(x, weight=weight)
stopifnot(all.equal(coverage(x, weight=-2.68 * weight), -2.68 * cvg3))

Because of properties 1 & 2 & 3, we have:
stopifnot(identical(coverage(x, width=100, weight=c(5L, -11L)),

5L * cvg1 - 11L * cvg2))

PROPERTY 4: Using the sum of 2 weight vectors produces the same
result as using the 2 weight vectors separately and summing the
2 results:
weight2 <- 10 * runif(40) + 3.7

12 coverage-methods

stopifnot(all.equal(coverage(x, weight=weight + weight2),
cvg3 + coverage(x, weight=weight2)))

PROPERTY 5: Repeating any input range N number of times is
equivalent to multiplying its assigned weight by N:
times <- sample(0:10L, length(x), replace=TRUE)
stopifnot(all.equal(coverage(rep(x, times), weight=rep(weight, times)),

coverage(x, weight=weight * times)))

In particular, if 'weight' is not supplied:
stopifnot(identical(coverage(rep(x, times)), coverage(x, weight=times)))

PROPERTY 6: If none of the input range actually gets clipped during
the "shift and clip" process, then:
##
sum(cvg) = sum(width(x) * weight)
##
stopifnot(sum(cvg3) == sum(width(x) * weight))

In particular, if 'weight' is not supplied:
stopifnot(sum(cvg0) == sum(width(x)))

Note that this property is sometimes used in the context of a
ChIP-Seq analysis to estimate "the number of reads in a peak", that
is, the number of short reads that belong to a peak in the coverage
vector computed from the genomic locations (a.k.a. genomic ranges)
of the aligned reads. Because of property 6, the number of reads in
a peak is approximately the area under the peak divided by the short
read length.

PROPERTY 7: If 'weight' is not supplied, then disjoining or reducing
the ranges before calling coverage() has the effect of "shaving" the
coverage vector at elevation 1:
table(cvg0)
shaved_cvg0 <- cvg0
runValue(shaved_cvg0) <- pmin(runValue(cvg0), 1L)
table(shaved_cvg0)

stopifnot(identical(coverage(disjoin(x)), shaved_cvg0))
stopifnot(identical(coverage(reduce(x)), shaved_cvg0))

C. SOME SANITY CHECKS

dummy.coverage <- function(x, shift=0L, width=NULL)
{

y <- unlist(shift(x, shift))
if (is.null(width))

width <- max(c(0L, y))
Rle(tabulate(y, nbins=width))

}

check_real_vs_dummy <- function(x, shift=0L, width=NULL)

DataFrame-utils 13

{
res1 <- coverage(x, shift=shift, width=width)
res2 <- dummy.coverage(x, shift=shift, width=width)
stopifnot(identical(res1, res2))

}
check_real_vs_dummy(x)
check_real_vs_dummy(x, shift=7)
check_real_vs_dummy(x, shift=7, width=27)
check_real_vs_dummy(x, shift=c(-4, 2))
check_real_vs_dummy(x, shift=c(-4, 2), width=12)
check_real_vs_dummy(x, shift=-max(end(x)))

With a set of distinct single positions:
x3 <- IRanges(sample(50000, 20000), width=1)
stopifnot(identical(sort(start(x3)), which(coverage(x3) != 0L)))

D. COVERAGE OF AN IRangesList OBJECT

x <- IRangesList(A=IRanges(3*(4:-1), width=1:3), B=IRanges(2:10, width=5))
cvg <- coverage(x)
cvg

stopifnot(identical(cvg[[1]], coverage(x[[1]])))
stopifnot(identical(cvg[[2]], coverage(x[[2]])))

coverage(x, width=c(50, 9))
coverage(x, width=c(NA, 9))
coverage(x, width=9) # 'width' gets recycled

Each list element in 'shift' and 'weight' gets recycled to the length
of the corresponding element in 'x'.
weight <- list(as.integer(10^(0:5)), -0.77)
cvg2 <- coverage(x, weight=weight)
cvg2 # 1st coverage vector is an integer-Rle, 2nd is a numeric-Rle

identical(mapply(coverage, x=x, weight=weight), as.list(cvg2))

DataFrame-utils Common operations on DataFrame objects

Description

Common operations on DataFrame objects.

Splitting

In the following code snippets, x is a DataFrame.

split(x, f, drop = FALSE): Splits x into a CompressedSplitDataFrameList, according to f,
dropping elements corresponding to unrepresented levels if drop is TRUE.

14 DataFrameList-class

mstack(..., .index.var = "name"): Stacks the data frames passed as through . . . , using
.index.var as the index column name. See stack.

Author(s)

Michael Lawrence

See Also

DataTable, Vector, and RangedData, which makes heavy use of this class.

Examples

split

sw <- DataFrame(swiss)
swsplit <- split(sw, sw[["Education"]])

rbind

do.call(rbind, as.list(swsplit))

cbind

cbind(DataFrame(score), DataFrame(counts))

DataFrameList-class List of DataFrames

Description

Represents a list of DataFrame objects. The SplitDataFrameList class contains the additional
restriction that all the columns be of the same name and type. Internally it is stored as a list of
DataFrame objects and extends List.

Accessors

In the following code snippets, x is a DataFrameList.

dim(x): Get the two element integer vector indicating the number of rows and columns over the
entire dataset.

dimnames(x): Get the list of two character vectors, the first holding the rownames (possibly NULL)
and the second the column names.

columnMetadata(x): Get the DataFrame of metadata along the columns, i.e., where each column
in x is represented by a row in the metadata. The metadata is common across all elements of
x. Note that calling mcols(x) returns the metadata on the DataFrame elements of x.

columnMetadata(x) <- value: Set the DataFrame of metadata for the columns.

DataFrameList-class 15

Subsetting

In the following code snippets, x is a SplitDataFrameList. In general x follows the conventions
of SimpleList/CompressedList with the following addition:

x[i,j,drop]: If matrix subsetting is used, i selects either the list elements or the rows within the
list elements as determined by the [method for SimpleList/CompressedList, j selects the
columns, and drop is used when one column is selected and output can be coerced into an
AtomicList or RangesList subclass.

x[i,j] <- value: If matrix subsetting is used, i selects either the list elements or the rows
within the list elements as determined by the [<- method for SimpleList/CompressedList,
j selects the columns and value is the replacement value for the selected region.

Constructor

DataFrameList(...): Concatenates the DataFrame objects in ... into a new DataFrameList.

SplitDataFrameList(..., compress = TRUE, cbindArgs = FALSE): If cbindArgs
is FALSE, the ... arguments are coerced to DataFrame objects and concatenated to form the
result. The arguments must have the same number and names of columns. If cbindArgs is
TRUE, the arguments are combined as columns. The arguments must then be the same length,
with each element of an argument mapping to an element in the result. If compress = TRUE,
returns a CompressedSplitDataFrameList; else returns a SimpleSplitDataFrameList.

Combining

In the following code snippets, objects in ... are of class DataFrameList.

rbind(...): Creates a new DataFrameList containing the element-by-element row concatena-
tion of the objects in

cbind(...): Creates a new DataFrameList containing the element-by-element column concate-
nation of the objects in

Transformation

transform(`_data`, ...): Transforms a SplitDataFrame in a manner analogous to the base
transform, where the columns are List objects adhering to the structure of _data.

Coercion

In the following code snippets, x is a DataFrameList.

as(from, "DataFrame"): Coerces a SplitDataFrameList to a DataFrame, which has a column
for every column in from, except each column is a List with the same structure as from.

as(from, "SplitDataFrameList"): By default, simply calls the SplitDataFrameList con-
structor on from. If from is a List, each element of from is passed as an argument to
SplitDataFrameList, like calling as.list on a vector. If from is a DataFrame, each row
becomes an element in the list.

stack(x, index.var = "name"): Unlists x and adds a column named index.var to the result,
indicating the element of x from which each row was obtained.

16 expand

as.data.frame(x, row.names = NULL, optional = FALSE, ..., value.name = "value", use.outer.mcols = FALSE, group_name.as.factor = FALSE):
Coerces x to a data.frame. See as.data.frame on the List man page for details (?List).

Author(s)

Michael Lawrence

See Also

DataFrame, RangedData, which uses a DataFrameList to split the data by the spaces.

expand The expand method for uncompressing compressed data columns

Description

Expand an object with compressed columns such that all compressed values are represented as
separate rows.

Usage

S4 method for signature 'DataFrame'
expand(x, colnames, keepEmptyRows, ...)

Arguments

x A DataFrame containing some columns that are compressed (e.g., CompressedCharacterList).

colnames A character or numeric vector containing the names or indices of the com-
pressed columns to expand. The order of expansion is controlled by the column
order in this vector.

keepEmptyRows A logical indicating if rows containing empty values in the specified colnames
should be retained or dropped. When TRUE, empty values are set to NA and all
rows are kept. When FALSE, rows with empty values in the colnames columns
are dropped.

... Arguments passed to other methods.

Value

A DataFrame that has been expanded row-wise to match the dimension of the uncompressed
columns.

Author(s)

Herve Pages and Marc Carlson

See Also

DataFrame-class

extractList 17

Examples

aa <- CharacterList("a", paste0("d", 1:2), paste0("b", 1:3), c(), "c")
bb <- CharacterList(paste0("sna", 1:2),"foo", paste0("bar",1:3),c(),"hica")
df <- DataFrame(aa=aa, bb=bb, cc=11:15)

expand the aa column only, and keep rows adjacent to empty values
expand(df, colnames="aa", keepEmptyRows=TRUE)

expand the aa column only but do not keep rows
expand(df, colnames="aa", keepEmptyRows=FALSE)

expand the aa and then the bb column, but
keeping rows next to empty compressed values
expand(df, colnames=c("aa","bb"), keepEmptyRows=TRUE)

expand the bb and then the aa column, but don't keep rows adjacent to
empty values from bb and aa
expand(df, colnames=c("aa","bb"), keepEmptyRows=FALSE)

extractList Group elements of a vector-like object into a list-like object

Description

relist and split are 2 common ways of grouping the elements of a vector-like object into a list-
like object. The IRanges package defines relist and split methods that operate on a Vector
object and return a List object.

Because relist and split both impose severe restrictions on the kind of grouping that they support
(e.g. every element in the input object needs to go in a group and can only go in one group), the
IRanges package introduces the extractList generic function for performing arbitrary groupings.

relist, split, and extractList have in common that they return a list-like value where each list
element has the same class as the original vector-like object. Thus they need to be able to select
the appropriate List concrete subclass to use for this returned value. This selection is performed by
relistToClass and is based only on the class of the original object.

Usage

relist()

S4 method for signature 'ANY,List'
relist(flesh, skeleton)
S4 method for signature 'Vector,list'
relist(flesh, skeleton)

splitAsList() and split()

18 extractList

splitAsList(x, f, drop=FALSE, ...)

S4 method for signature 'Vector,ANY'
split(x, f, drop=FALSE)

extractList()

extractList(x, i)

relistToClass()

relistToClass(x)

Arguments

flesh, x A vector-like object.

skeleton A list-like object. Only the "shape" (i.e. element lengths) of skeleton matters.
Its exact content is ignored.

f An atomic vector or a factor (possibly in Rle form).

drop Logical indicating if levels that do not occur should be dropped (if f is a factor).

i A list-like object. Unlike for skeleton, the content here matters (see Details
section below). Note that i can be a Ranges object (a particular type of list-like
object), and, in that case, extractList is particularly fast (this is a common use
case).

... Arguments to pass to methods.

Details

By default, extractList(x, i) is equivalent to:

relist(x[unlist(i)], i)

An exception is made when x is a data-frame-like object. In that case x is subsetted along the rows,
that is, extractList(x, i) is equivalent to:

relist(x[unlist(i),], i)

This is more or less how the default method is implemented, except for some optimizations when i
is a Ranges object.

relist and split can be seen as specialized versions of extractList:

relist(flesh, skeleton) is equivalent to
extractList(flesh, PartitioningByEnd(skeleton))

extractList 19

split(x, f) is equivalent to
extractList(x, split(seq_along(f), f))

It is good practise to use extractList only for cases not covered by relist or split. Whenever
possible, using relist or split is preferred as they will always perform more efficiently. In
addition their names carry meaning and are familiar to most R users/developers so they’ll make
your code easier to read/understand.

Note that the transformation performed by relist or split is always reversible (via unlist and
unsplit, respectively), but the transformation performed by extractList is not.

Value

The relist method behaves like utils::relist except that it returns a List object. If skeleton
has names, then they are propagated to the returned value.

splitAsList and the split method behave like base::split except that they return a List object.
The difference between splitAsList and split is that the former always returns a List object
while the latter can return an ordinary list (e.g. when x and f are ordinary vectors and/or factors).

extractList returns a list-like object parallel to i and with the same "shape" as i (i.e. same
element lengths). If i has names, then they are propagated to the returned value.

All these functions (except relistToClass) return a list-like object where the list elements have
the same class as x. relistToClass gives the exact class of the returned object.

Author(s)

H. Pages

See Also

• The unlist and relist functions in the base and utils packages, respectively.

• The split and unsplit functions in the base package.

• Vector and List objects.

• Ranges, Rle and DataFrame objects.

Examples

On an Rle object:
x <- Rle(101:105, 6:2)
i <- IRanges(6:10, 16:12, names=letters[1:5])
extractList(x, i)

On a DataFrame object:
df <- DataFrame(X=x, Y=LETTERS[1:20])
extractList(df, i)

20 FilterRules-class

FilterMatrix-class Matrix for Filter Results

Description

A FilterMatrix object is a matrix meant for storing the logical output of a set of FilterRules,
where each rule corresponds to a column. The FilterRules are stored within the FilterMatrix
object, for the sake of provenance. In general, a FilterMatrix behaves like an ordinary matrix.

Accessor methods

In the code snippets below, x is a FilterMatrix object.

filterRules(x): Get the FilterRules corresponding to the columns of the matrix.

Constructor

FilterMatrix(matrix, filterRules): Constructs a FilterMatrix, from a given matrix and
filterRules. Not usually called by the user, see evalSeparately.

Utilities

summary(object, discarded = FALSE, percent = FALSE): Returns a numeric vector con-
taining the total number of records (nrow), the number passed by each filter, and the number
of records that passed every filter. If discarded is TRUE, then the numbers are inverted (i.e.,
the values are subtracted from the number of rows). If percent is TRUE, then the numbers are
percent of total.

Author(s)

Michael Lawrence

See Also

evalSeparately is the typical way to generate this object.

FilterRules-class Collection of Filter Rules

Description

A FilterRules object is a collection of filter rules, which can be either expression or function
objects. Rules can be disabled/enabled individually, facilitating experimenting with different com-
binations of filters.

FilterRules-class 21

Details

It is common to split a dataset into subsets during data analysis. When data is large, however,
representing subsets (e.g. by logical vectors) and storing them as copies might become too costly
in terms of space. The FilterRules class represents subsets as lightweight expression and/or
function objects. Subsets can then be calculated when needed (on the fly). This avoids copying
and storing a large number of subsets. Although it might take longer to frequently recalculate a
subset, it often is a relatively fast operation and the space savings tend to be more than worth it
when data is large.

Rules may be either expressions or functions. Evaluating an expression or invoking a function
should result in a logical vector. Expressions are often more convenient, but functions (i.e. closures)
are generally safer and more powerful, because the user can specify the enclosing environment. If
a rule is an expression, it is evaluated inside the envir argument to the eval method (see below).
If a function, it is invoked with envir as its only argument. See examples.

Accessor methods

In the code snippets below, x is a FilterRules object.

active(x): Get the logical vector of length length(x), where TRUE for an element indicates that
the corresponding rule in x is active (and inactive otherwise). Note that names(active(x))
is equal to names(x).

active(x) <- value: Replace the active state of the filter rules. If value is a logical vector, it
should be of length length(x) and indicate which rules are active. Otherwise, it can be either
numeric or character vector, in which case it sets the indicated rules (after dropping NA’s) to
active and all others to inactive. See examples.

Constructor

FilterRules(exprs = list(), ..., active = TRUE): Constructs a FilterRules with the
rules given in the list exprs or in The initial active state of the rules is given by active,
which is recycled as necessary. Elements in exprs may be either character (parsed into an
expression), a language object (coerced to an expression), an expression, or a function that
takes at least one argument. IMPORTANTLY, all arguments in ... are quote()’d and
then coerced to an expression. So, for example, character data is only parsed if it is a literal.
The names of the filters are taken from the names of exprs and ..., if given. Otherwise,
the character vectors take themselves as their name and the others are deparsed (before any
coercion). Thus, it is recommended to always specify meaningful names. In any case, the
names are made valid and unique.

Subsetting and Replacement

In the code snippets below, x is a FilterRules object.

x[i]: Subsets the filter rules using the same interface as for Vector.

x[[i]]: Extracts an expression or function via the same interface as for List.

x[[i]] <- value: The same interface as for List. The default active state for new rules is TRUE.

22 FilterRules-class

Combining

In the code snippets below, x is a FilterRules object.

append(x, values, after = length(x)): Appends the values FilterRules instance onto x
at the index given by after.

c(x, ..., recursive = FALSE): Concatenates the FilterRule instances in ... onto the end
of x.

Evaluating

eval(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv()): Evaluates a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined via the AND operation (i.e. &) so that a single
logical vector is returned from eval.

evalSeparately(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else
baseenv()): Evaluates separately each rule in a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined into a logical matrix, with a column for each
rule. This is essentially the parallel evaluator, while eval is the serial evaluator.

subsetByFilter(x, filter): Evaluates filter on x and uses the result to subset x. The result
contains only the elements in x for which filter evaluates to TRUE.

summary(object, subject): Returns an integer vector with the number of elements in subject
that pass each rule in object, along with a count of the elements that pass all filters.

Filter Closures

When a closure (function) is included as a filter in a FilterRules object, it is converted to a
FilterClosure, which is currently nothing more than a marker class that extends function. When
a FilterClosure filter is extracted, there are some accessors and utilities for manipulating it:

params: Gets a named list of the objects that are present in the enclosing environment (without
inheritance). This assumes that a filter is constructed via a constructor function, and the objects
in the frame of the constructor (typically, the formal arguments) are the parameters of the filter.

Author(s)

Michael Lawrence

See Also

rdapply, which accepts a FilterRules instance to filter each space before invoking the user func-
tion.

FilterRules-class 23

Examples

constructing a FilterRules instance

an empty set of filters
filters <- FilterRules()

as a simple character vector
filts <- c("peaks", "promoters")
filters <- FilterRules(filts)
active(filters) # all TRUE

with functions and expressions
filts <- list(peaks = expression(peaks), promoters = expression(promoters),

find_eboxes = function(rd) rep(FALSE, nrow(rd)))
filters <- FilterRules(filts, active = FALSE)
active(filters) # all FALSE

direct, quoted args (character literal parsed)
filters <- FilterRules(under_peaks = peaks, in_promoters = "promoters")
filts <- list(under_peaks = expression(peaks),

in_promoters = expression(promoters))

specify both exprs and additional args
filters <- FilterRules(filts, diffexp = de)

filts <- c("promoters", "peaks", "introns")
filters <- FilterRules(filts)

evaluation
df <- DataFrame(peaks = c(TRUE, TRUE, FALSE, FALSE),

promoters = c(TRUE, FALSE, FALSE, TRUE),
introns = c(TRUE, FALSE, FALSE, FALSE))

eval(filters, df)
fm <- evalSeparately(filters, df)
identical(filterRules(fm), filters)
summary(fm)
summary(fm, percent = TRUE)
fm <- evalSeparately(filters, df, serial = TRUE)

set the active state directly

active(filters) <- FALSE # all FALSE
active(filters) <- TRUE # all TRUE
active(filters) <- c(FALSE, FALSE, TRUE)
active(filters)["promoters"] <- TRUE # use a filter name

toggle the active state by name or index

active(filters) <- c(NA, 2) # NA's are dropped
active(filters) <- c("peaks", NA)

24 findOverlaps-methods

findOverlaps-methods Finding overlapping ranges

Description

Various methods for finding/counting interval overlaps between two "range-based" objects: a query
and a subject.

NOTE: This man page describes the methods that operate on Ranges, Views, RangesList, or ViewsList
objects. See ?`findOverlaps,GenomicRanges,GenomicRanges-method` in the GenomicRanges
package for methods that operate on GenomicRanges or GRangesList objects.

Usage

findOverlaps(query, subject, maxgap=0L, minoverlap=1L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
algorithm=c("nclist", "intervaltree"), ...)

countOverlaps(query, subject, maxgap=0L, minoverlap=1L,
type=c("any", "start", "end", "within", "equal"),
algorithm=c("nclist", "intervaltree"), ...)

overlapsAny(query, subject, maxgap=0L, minoverlap=1L,
type=c("any", "start", "end", "within", "equal"),
algorithm=c("nclist", "intervaltree"), ...)

query %over% subject
query %within% subject
query %outside% subject

subsetByOverlaps(query, subject, maxgap=0L, minoverlap=1L,
type=c("any", "start", "end", "within", "equal"),
algorithm=c("nclist", "intervaltree"), ...)

mergeByOverlaps(query, subject, ...)

S4 method for signature 'Hits'
ranges(x, query, subject)

Arguments

query, subject Each of them can be a Ranges, Views, RangesList, ViewsList, or RangedData
object. In addition, if subject is a Ranges object, query can be an integer
vector to be converted to length-one ranges.
If query is a RangesList or RangedData, subject must be a RangesList or
RangedData. If both lists have names, each element from the subject is paired
with the element from the query with the matching name, if any. Otherwise,

findOverlaps-methods 25

elements are paired by position. The overlap is then computed between the
pairs as described below.
If subject is omitted, query is queried against itself. In this case, and only
this case, the ignoreSelf and ignoreRedundant arguments are allowed. By
default, the result will contain hits for each range against itself, and if there is
a hit from A to B, there is also a hit for B to A. If ignoreSelf is TRUE, all self
matches are dropped. If ignoreRedundant is TRUE, only one of A->B and B->A
is returned.

maxgap, minoverlap

Intervals with a separation of maxgap or less and a minimum of minoverlap
overlapping positions, allowing for maxgap, are considered to be overlapping.
maxgap should be a scalar, non-negative, integer. minoverlap should be a scalar,
positive integer.

type By default, any overlap is accepted. By specifying the type parameter, one
can select for specific types of overlap. The types correspond to operations in
Allen’s Interval Algebra (see references). If type is start or end, the intervals
are required to have matching starts or ends, respectively. While this operation
seems trivial, the naive implementation using outer would be much less effi-
cient. Specifying equal as the type returns the intersection of the start and
end matches. If type is within, the query interval must be wholly contained
within the subject interval. Note that all matches must additionally satisfy the
minoverlap constraint described above.
With the old findOverlaps/countOverlaps implementation based on Interval Trees
(algorithm="intervaltree"), the maxgap parameter has special meaning with
the special overlap types. For start, end, and equal, it specifies the maximum
difference in the starts, ends or both, respectively. For within, it is the maximum
amount by which the query may be wider than the subject. With the new im-
plementation based on Nested Containment Lists (algorithm="nclist"), this
special meaning is still being used but only when type is set to start or end.
See ?NCList for more information about this change and other differences be-
tween the new and old findOverlaps/countOverlaps implementations. See the
algorithm argument below for how to switch between the 2 implementations.

select If query is a Ranges or Views object: When select is "all" (the default), the
results are returned as a Hits object. Otherwise the returned value is an integer
vector parallel to query (i.e. same length) containing the first, last, or arbitrary
overlapping interval in subject, with NA indicating intervals that did not overlap
any intervals in subject.
If query is a RangesList, ViewsList, or RangedData object: When select is
"all" (the default), the results are returned as a HitsList object. Otherwise the
returned value depends on the drop argument. When select != "all" && !drop,
an IntegerList is returned, where each element of the result corresponds to a
space in query. When select != "all" && drop, an integer vector is re-
turned containing indices that are offset to align with the unlisted query.

algorithm Can be "nclist" (the default) or "intervaltree". This argument was added in
BioC 3.1 to facilitate the transition between the new findOverlaps/countOverlaps
implementation based on Nested Containment Lists and the old implementation
based on Interval Trees. See ?NCList and ?IntervalTree for more information

26 findOverlaps-methods

about these implementations. Note that the old implementation is deprecated
starting with BioC 3.1 and will become defunct in BioC 3.2. The algorithm
argument will be removed in BioC 3.3.

... Further arguments to be passed to or from other methods:

• drop: Supported only when query is a RangesList, ViewsList, or Ranged-
Data object. FALSE by default. See select argument above for the details.

• ignoreSelf, ignoreRedundant: When subject is omitted, the ignoreSelf
and ignoreRedundant arguments (both FALSE by default) are allowed. See
query and subject arguments above for the details.

x Hits object returned by findOverlaps.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another.

The simplest approach is to call the findOverlaps function on a Ranges or other object with range
information (aka "range-based object").

Value

For findOverlaps: see select argument above.

For countOverlaps: the overlap hit count for each range in query using the specified findOverlaps
parameters. For RangesList objects, it returns an IntegerList object.

overlapsAny finds the ranges in query that overlap any of the ranges in subject. For Ranges or
Views objects, it returns a logical vector of length equal to the number of ranges in query. For
RangesList, RangedData, or ViewsList objects, it returns a LogicalList object, where each element
of the result corresponds to a space in query.

%over% and %within% are convenience wrappers for the 2 most common use cases. Currently
defined as `%over%` <- function(query, subject) overlapsAny(query, subject) and
`%within%` <- function(query, subject) overlapsAny(query, subject, type="within").
%outside% is simply the inverse of %over%.

subsetByOverlaps returns the subset of query that has an overlap hit with a range in subject
using the specified findOverlaps parameters.

mergeByOverlaps computes the overlap between query and subject according to the arguments in
.... It then extracts the corresponding hits from each object and returns a DataFrame containing
one column for the query and one for the subject, as well as any mcols that were present on either
object. The query and subject columns are named by quoting and deparsing the corresponding
argument.

ranges(x, query, subject) returns a Ranges of the same length as Hits object x holding the
regions of intersection between the overlapping ranges in objects query and subject, which should
be the same query and subject used in the call to findOverlaps that generated x.

Author(s)

Michael Lawrence and H. Pages

findOverlaps-methods 27

References

Allen’s Interval Algebra: James F. Allen: Maintaining knowledge about temporal intervals. In:
Communications of the ACM. 26/11/1983. ACM Press. S. 832-843, ISSN 0001-0782

See Also

• The Hits and HitsList classes for representing a set of hits between 2 vector-like objects.

• findOverlaps,GenomicRanges,GenomicRanges-method in the GenomicRanges package for
methods that operate on GRanges or GRangesList objects.

• The NCList class and constructor.

• The IntervalTree and IntervalForest classes and constructors (deprecated).

• The Ranges, Views, RangesList, ViewsList, and RangedData classes.

• The IntegerList and LogicalList classes.

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))

findOverlaps()

at most one hit per query
findOverlaps(query, subject, select="first")
findOverlaps(query, subject, select="last")
findOverlaps(query, subject, select="arbitrary")

overlap even if adjacent only
(FIXME: the gap between 2 adjacent ranges should be still considered
0. So either we have an argument naming problem, or we should modify
the handling of the 'maxgap' argument so that the user would need to
specify maxgap=0L to obtain the result below.)
findOverlaps(query, subject, maxgap=1L)

shortcut
findOverlaps(query, subject)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2), c(5, 4))

one Ranges with itself
findOverlaps(query)

single points as query
subject <- IRanges(c(1, 6, 13), c(4, 9, 14))
findOverlaps(c(3L, 7L, 10L), subject, select="first")

alternative overlap types
query <- IRanges(c(1, 5, 3, 4), width=c(2, 2, 4, 6))

28 findOverlaps-methods

subject <- IRanges(c(1, 3, 5, 6), width=c(4, 4, 5, 4))

findOverlaps(query, subject, type="start")
findOverlaps(query, subject, type="start", maxgap=1L)
findOverlaps(query, subject, type="end", select="first")
ov <- findOverlaps(query, subject, type="within", maxgap=1L)
ov

overlapsAny()

overlapsAny(query, subject, type="start")
overlapsAny(query, subject, type="end")
query %over% subject # same as overlapsAny(query, subject)
query %within% subject # same as overlapsAny(query, subject,

type="within")

"ranges" METHOD FOR Hits OBJECTS

extract the regions of intersection between the overlapping ranges
ranges(ov, query, subject)

Using RangesList objects

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
qpartition <- factor(c("a","a","b"))
qlist <- split(query, qpartition)

subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
spartition <- factor(c("a","a","b"))
slist <- split(subject, spartition)

at most one hit per query
findOverlaps(qlist, slist, select="first")
findOverlaps(qlist, slist, select="last")
findOverlaps(qlist, slist, select="arbitrary")

query <- IRanges(c(1, 5, 3, 4), width=c(2, 2, 4, 6))
qpartition <- factor(c("a","a","b","b"))
qlist <- split(query, qpartition)

subject <- IRanges(c(1, 3, 5, 6), width=c(4, 4, 5, 4))
spartition <- factor(c("a","a","b","b"))
slist <- split(subject, spartition)

overlapsAny(qlist, slist, type="start")
overlapsAny(qlist, slist, type="end")
qlist

GappedRanges-class 29

subsetByOverlaps(qlist, slist)
countOverlaps(qlist, slist)

GappedRanges-class GappedRanges objects

Description

The GappedRanges class is a vector-like container for storing a set of "gapped ranges".

Details

A "gapped range" is conceptually the union of 1 or more non-overlapping (and non-empty) ranges
ordered from left to right. More precisely, a "gapped range" can be represented by a normal IRanges
object of length >= 1. In particular normality here ensures that the individual ranges are non-empty
and are separated by non-empty gaps. The start of a "gapped range" is the start of its first range.
The end of a "gapped range" is the end of its last range. If we ignore the gaps, then a GappedRanges
object can be seen as a Ranges object.

Constructor

No constructor function is provided for GappedRanges objects. The coercion methods described
below can be used to create GappedRanges objects.

Coercion

as(from, "GappedRanges"): Turns a CompressedNormalIRangesList or CompressedIRanges-
List object into a GappedRanges object.

as(from, "RangesList"): Turns a GappedRanges object into a RangesList object (more pre-
cisely the result will be a CompressedNormalIRangesList object).

Accessor methods

In the code snippets below, x is a GappedRanges object.

length(x): Returns the number of "gapped ranges" in x.

start(x), end(x): Returns an integer vector of length length(x) containing the start and end
(respectively) of each "gapped range" in x. See Details section above for the exact definitions
of the start and end of a "gapped range".

width(x): Defined as end(x) - start(x) + 1L.

ngap(x): Returns an integer vector of length length(x) containing the number of gaps for each
"gapped range" in x. Equivalent to elementLengths(x) - 1L.

names(x): NULL or a character vector of length length(x).

30 GappedRanges-class

Subsetting and related operations

In the code snippets below, x is a GappedRanges object.

x[i]: Returns a new GappedRanges object made of the selected "gapped ranges". i can be a
numeric, character or logical vector, or any of the types supported by the [method for Com-
pressedNormalIRangesList objects.

x[[i]]: Returns the NormalIRanges object representing the i-th element in x. Equivalent to
as(from, "RangesList")[[i]]. i can be a single numeric value or a single character string.

elemenType(x): Returns the type of x[[i]] as a single string (always "NormalIRanges"). Note
that the semantic of the [[method for GappedRanges objects is different from the semantic
of the method for Ranges objects (the latter returns an integer vector).

elementLengths(x): Semantically equivalent to

sapply(seq_len(length(x)), function(i) length(x[[i]]))

but much faster. Note that the semantic of the elementLengths method for GappedRanges
objects is different from the semantic of the method for Ranges objects (the latter returns the
width of the Ranges object).

Combining and related operations

In the code snippets below, x is a GappedRanges object.

c(x, ...): Combine x and the GappedRanges objects in ... together. The result is an object of
the same class as x.

Author(s)

H. Pages

See Also

Ranges-class, CompressedNormalIRangesList-class

Examples

The 3 following IRanges objects are normal. Each of them will be
stored as a "gapped range" in the GappedRanges object 'gr'.
ir1 <- IRanges(start=c(11, 21, 23), end=c(15, 21, 30))
ir2 <- IRanges(start=-2, end=15)
ir3 <- IRanges(start=c(-2, 21), end=c(10, 22))
irl <- IRangesList(ir1, ir2, ir3)

gr <- as(irl, "GappedRanges")
gr

length(gr)
start(gr)
end(gr)
width(gr)
ngap(gr)

Grouping-class 31

gr[-1]
gr[ngap(gr) >= 1]
gr[[1]]
as.integer(gr[[1]])
gr[[2]]
as.integer(gr[[2]])
as(gr, "RangesList")
start(as(gr, "RangesList")) # not the same as 'start(gr)'

Grouping-class Grouping objects

Description

We call grouping an arbitrary mapping from a collection of NO objects to a collection of NG groups,
or, more formally, a bipartite graph between integer sets [1, NO] and [1, NG]. Objects mapped to
a given group are said to belong to, or to be assigned to, or to be in that group. Additionally,
the objects in each group are ordered. So for example the 2 following groupings are considered
different:

Grouping 1: NG = 3, NO = 5
group objects

1 : 4, 2
2 :
3 : 4

Grouping 2: NG = 3, NO = 5
group objects

1 : 2, 4
2 :
3 : 4

There are no restriction on the mapping e.g. any object can be mapped to 0, 1, or more groups, and
can be mapped twice to the same group. Also some or all the groups can be empty.

The Grouping class is a virtual class that formalizes the most general kind of grouping. More
specific groupings (e.g. many-to-one mappings) are formalized via specific Grouping subclasses.

This man page documents the core Grouping API, and 2 important Grouping subclasses: Many-
ToOneGrouping and Partitioning (the latter being a particular case of the former).

The core Grouping API

Let’s give a formal description of the core Grouping API:

Groups G_i are indexed from 1 to NG (1 <= i <= NG).

Objects O_j are indexed from 1 to NO (1 <= j <= NO).

Given that empty groups are allowed, NG can be greater than NO.

If x is a Grouping object:

32 Grouping-class

length(x): Returns the number of groups (NG).
names(x): Returns the names of the groups.
nobj(x): Returns the number of objects (NO).

Going from groups to objects:

x[[i]]: Returns the indices of the objects (the j’s) that belong to G_i. This provides the mapping
from groups to objects.

grouplength(x, i=NULL): Returns the number of objects in G_i. Works in a vectorized fashion
(unlike x[[i]]). grouplength(x) is equivalent to grouplength(x, seq_len(length(x))).
If i is not NULL, grouplength(x, i) is equivalent to sapply(i, function(ii) length(x[[ii]])).

Note to developers: Given that length, names and [[are expected to work on any Grouping object,
those objects can be seen as List objects. More precisely, the Grouping class actually extends the
IntegerList class. In particular, many other "list" operations like as.list, elementLengths, and
unlist, etc... should work out-of-the-box on any Grouping object.

ManyToOneGrouping objects

The ManyToOneGrouping class is a virtual class for representing groupings where every object
belongs to one group and only one. The grouping of an empty collection of objects in an arbitrary
number of groups is a valid ManyToOneGrouping object.

Note that, for a ManyToOneGrouping object, if NG is 0 then NO must also be 0.

The ManyToOneGrouping API extends the core Grouping API by adding a couple more operations
for going from groups to objects:

members(x, i): Equivalent to x[[i]] if i is a single integer. Otherwise, if i is an integer vector
of arbitrary length, it’s equivalent to sort(unlist(sapply(i, function(ii) x[[ii]]))).

vmembers(x, L): A version of members that works in a vectorized fashion with respect to the L ar-
gument (L must be a list of integer vectors). Returns lapply(L, function(i) members(x, i)).

And also by adding operations for going from objects to groups:

togroup(x, j=NULL): Returns the index i of the group that O_j belongs to. This provides the
mapping from objects to groups (many-to-one mapping). Works in a vectorized fashion.
togroup(x) is equivalent to togroup(x, seq_len(nobj(x))): both return the entire map-
ping in an integer vector of length NO. If j is not NULL, togroup(x, j) is equivalent to
y <- togroup(x); y[j].

togrouplength(x, j=NULL): Returns the number of objects that belong to the same group as O_j
(including O_j itself). Equivalent to grouplength(x, togroup(x, j)).

One important property of any ManyToOneGrouping object x is that unlist(as.list(x)) is al-
ways a permutation of seq_len(nobj(x)). This is a direct consequence of the fact that every object
in the grouping belongs to one group and only one.

2 ManyToOneGrouping concrete subclasses: H2LGrouping and Dups

DOCUMENT ME Constructors:

H2LGrouping(high2low=integer()): [DOCUMENT ME]
Dups(high2low=integer()): [DOCUMENT ME]

Grouping-class 33

Partitioning objects

The Partitioning class is a virtual subclass of ManyToOneGrouping for representing block-groupings
i.e. groupings where each group contains objects that are neighbors in the original collection of ob-
jects. More formally, a grouping x is a block-grouping iff togroup(x) is sorted in increasing order
(not necessarily strictly increasing).

A Partitioning object can also be seen (and manipulated) as a Ranges object where all the ranges
are adjacent starting at 1 (i.e. it covers the 1:NO interval with no overlap between the ranges).

Note that a Partitioning object is both: a particular type of ManyToOneGrouping object and a par-
ticular type of Ranges object. Therefore all the methods that are defined for ManyToOneGrouping
and Ranges objects can also be used on a Partitioning object. See ?Ranges for a description of the
Ranges API.

The Partitioning virtual class has 3 concrete subclasses: PartitioningByEnd (only stores the end of
the groups, allowing fast mapping from groups to objects), and PartitioningByWidth (only stores
the width of the groups), and PartitioningMap which contains PartitioningByEnd and two additional
slots to re-order and re-list the object to a related mapping.

Constructors:

PartitioningByEnd(x=integer(), NG=NULL, names=NULL): x must be either a list-like object
or a sorted integer vector. NG must be either NULL or a single integer. names must be either
NULL or a character vector of length NG (if supplied) or length(x) (if NG is not supplied).
Returns the following PartitioningByEnd object y:

• If x is a list-like object, then the returned object y has the same length as x and is such
that width(y) is identical to elementLengths(x).

• If x is an integer vector and NG is not supplied, then x must be sorted (checked) and
contain non-NA non-negative values (NOT checked). The returned object y has the same
length as x and is such that end(y) is identical to x.

• If x is an integer vector and NG is supplied, then x must be sorted (checked) and contain
values >= 1 and <= NG (checked). The returned object y is of length NG and is such that
togroup(y) is identical to x.

If the names argument is supplied, it is used to name the partitions.

PartitioningByWidth(x=integer(), NG=NULL, names=NULL): x must be either a list-like ob-
ject or an integer vector. NG must be either NULL or a single integer. names must be either NULL
or a character vector of length NG (if supplied) or length(x) (if NG is not supplied).
Returns the following PartitioningByWidth object y:

• If x is a list-like object, then the returned object y has the same length as x and is such
that width(y) is identical to elementLengths(x).

• If x is an integer vector and NG is not supplied, then x must contain non-NA non-negative
values (NOT checked). The returned object y has the same length as x and is such that
width(y) is identical to x.

• If x is an integer vector and NG is supplied, then x must be sorted (checked) and contain
values >= 1 and <= NG (checked). The returned object y is of length NG and is such that
togroup(y) is identical to x.

If the names argument is supplied, it is used to name the partitions.

34 Grouping-class

PartitioningMap(x=integer(), mapOrder=integer()): x is a list-like object or a sorted in-
teger vector used to construct a PartitioningByEnd object. mapOrder numeric vector of the
mapped order.
Returns a PartitioningMap object.

Note that these constructors don’t recycle their names argument (to remain consistent with what
`names<-` does on standard vectors).

Author(s)

H. Pages

See Also

IntegerList-class, Ranges-class, IRanges-class, successiveIRanges, cumsum, diff

Examples

showClass("Grouping") # shows (some of) the known subclasses

A. H2LGrouping OBJECTS

high2low <- c(NA, NA, 2, 2, NA, NA, NA, 6, NA, 1, 2, NA, 6, NA, NA, 2)
h2l <- H2LGrouping(high2low)
h2l

The core Grouping API:
length(h2l)
nobj(h2l) # same as 'length(h2l)' for H2LGrouping objects
h2l[[1]]
h2l[[2]]
h2l[[3]]
h2l[[4]]
h2l[[5]]
grouplength(h2l) # same as 'unname(sapply(h2l, length))'
grouplength(h2l, 5:2)
members(h2l, 5:2) # all the members are put together and sorted
togroup(h2l)
togroup(h2l, 5:2)
togrouplength(h2l) # same as 'grouplength(h2l, togroup(h2l))'
togrouplength(h2l, 5:2)

The List API:
as.list(h2l)
sapply(h2l, length)

B. Dups OBJECTS

dups1 <- as(h2l, "Dups")
dups1

Grouping-class 35

duplicated(dups1) # same as 'duplicated(togroup(dups1))'

The purpose of a Dups object is to describe the groups of duplicated
elements in a vector-like object:
x <- c(2, 77, 4, 4, 7, 2, 8, 8, 4, 99)
x_high2low <- high2low(x)
x_high2low # same length as 'x'
dups2 <- Dups(x_high2low)
dups2
togroup(dups2)
duplicated(dups2)
togrouplength(dups2) # frequency for each element
table(x)

C. Partitioning OBJECTS

pbe1 <- PartitioningByEnd(c(4, 7, 7, 8, 15), names=LETTERS[1:5])
pbe1 # the 3rd partition is empty

The core Grouping API:
length(pbe1)
nobj(pbe1)
pbe1[[1]]
pbe1[[2]]
pbe1[[3]]
grouplength(pbe1) # same as 'unname(sapply(pbe1, length))' and 'width(pbe1)'
togroup(pbe1)
togrouplength(pbe1) # same as 'grouplength(pbe1, togroup(pbe1))'
names(pbe1)

The Ranges core API:
start(pbe1)
end(pbe1)
width(pbe1)

The List API:
as.list(pbe1)
sapply(pbe1, length)

Replacing the names:
names(pbe1)[3] <- "empty partition"
pbe1

Coercion to an IRanges object:
as(pbe1, "IRanges")

Other examples:
PartitioningByEnd(c(0, 0, 19), names=LETTERS[1:3])
PartitioningByEnd() # no partition
PartitioningByEnd(integer(9)) # all partitions are empty
x <- c(1L, 5L, 5L, 6L, 8L)
pbe2 <- PartitioningByEnd(x, NG=10L)

36 Hits-class-leftovers

stopifnot(identical(togroup(pbe2), x))
pbw2 <- PartitioningByWidth(x, NG=10L)
stopifnot(identical(togroup(pbw2), x))

D. RELATIONSHIP BETWEEN Partitioning OBJECTS AND successiveIRanges()

mywidths <- c(4, 3, 0, 1, 7)

The 3 following calls produce the same ranges:
ir <- successiveIRanges(mywidths) # IRanges instance.
pbe <- PartitioningByEnd(cumsum(mywidths)) # PartitioningByEnd instance.
pbw <- PartitioningByWidth(mywidths) # PartitioningByWidth instance.
stopifnot(identical(as(ir, "PartitioningByEnd"), pbe))
stopifnot(identical(as(ir, "PartitioningByWidth"), pbw))

Hits-class-leftovers Examples of basic manipulation of Hits objects

Description

IMPORTANT NOTE - 4/29/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Hits objects located in the S4Vectors
package.

Details

The as.data.frame method coerces a Hits object to a two column data.frame with one row for
each hit, where the value in the first column is the index of an element in the query and the value in
the second column is the index of an element in the subject.

Coercion

In the code snippets below, x is a Hits object.

as(from, "DataFrame"): Creates a DataFrame by combining the result of as.matrix(from)
with mcols(from).

as.data.frame(x): Attempts to coerce the result of as(from, "DataFrame") to a data.frame.

as(x, "List"): Like as.list, above.

See Also

The Hits class defined and documented in the S4Vectors package.

HitsList-class 37

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
hits <- findOverlaps(query, subject)

as.matrix(hits)
as.data.frame(hits)

as.table(hits) # hits per query
as.table(t(hits)) # hits per subject

Turn a Hits object into an IntegerList object with one list element
per element in the original query.
as(hits, "IntegerList")
as(hits, "List") # same as as(hits, "IntegerList")

Turn a Hits object into a PartitioningByEnd object that describes
the grouping of hits by query.
as(hits, "PartitioningByEnd")
as(hits, "Partitioning") # same as as(hits, "PartitioningByEnd")

remapHits()

hits2 <- remapHits(hits, subject.map=factor(c("e", "e", "d"), letters[1:5]))
hits2
hits3 <- remapHits(hits, subject.map=c(5, 5, 4), new.subjectLength=5)
hits3
stopifnot(identical(hits2, hits3))

HitsList-class List of Hits objects

Description

The HitsList class stores a set of Hits objects. It’s typically used to represent the result of
findOverlaps on two RangesList objects.

Details

Roughly the same set of utilities are provided for HitsList as for Hits:

The as.matrix method coerces a HitsList in a similar way to Hits, except a column is prepended
that indicates which space (or element in the query RangesList) to which the row corresponds.

The as.table method flattens or unlists the list, counts the number of hits for each query range and
outputs the counts as a table, which has the same shape as from a single Hits object.

To transpose a HitsList x, so that the subject and query in each space are interchanged, call t(x).
This allows, for example, counting the number of hits for each subject element using as.table.

38 inter-range-methods

When the HitsList object is the result of a call to findOverlaps on two RangesList objects, the
actual regions of intersection between the overlapping ranges can be obtained with the ranges
accessor.

Coercion

In the code snippets below, x is a HitsList object.

as.matrix(x): calls as.matrix on each Hits, combines them row-wise and offsets the indices
so that they are aligned with the result of calling unlist on the query and subject.

as.table(x): counts the number of hits for each query element in x and outputs the counts as a
table, which is aligned with the result of calling unlist on the query.

t(x): Interchange the query and subject in each space of x, returns a transposed HitsList.

Accessors

queryHits(x): Equivalent to unname(as.matrix(x)[,1]).

subjectHits(x): Equivalent to unname(as.matrix(x)[,2]).

space(x): gets the character vector naming the space in the query RangesList for each hit, or
NULL if the query did not have any names.

ranges(x, query, subject): returns a RangesList holding the intersection of the ranges in the
RangesList objects query and subject, which should be the same subject and query used in
the call to findOverlaps that generated x. Eventually, we might store the query and subject
inside x, in which case the arguments would be redundant.

Note

This class is highly experimental. It has not been well tested and may disappear at any time.

Author(s)

Michael Lawrence

See Also

findOverlaps, which generates an instance of this class.

inter-range-methods Inter range transformations of a Ranges, Views, RangesList, MaskCol-
lection, or RangedData object

inter-range-methods 39

Description

Except for disjointBins(), all the transformations described in this man page are endomorphisms
that operate on a single "range-based" object, that is, they transform the ranges contained in the input
object and return them in an object of the same class as the input object.

Range-based endomorphisms are grouped in 2 categories:

1. Intra range transformations like shift() that transform each range individually (and indepen-
dently of the other ranges) and return an object of the same length as the input object. Those
transformations are described in the intra-range-methods man page (see ?`intra-range-methods`).

2. Inter range transformations like reduce() that transform all the ranges together as a set to
produce a new set of ranges and return an object not necessarily of the same length as the
input object. Those transformations are described in this man page.

Usage

range()

S4 method for signature 'Ranges'
range(x, ..., na.rm=FALSE)

S4 method for signature 'RangesList'
range(x, ..., na.rm=FALSE)

reduce()

reduce(x, ...)

S4 method for signature 'Ranges'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

S4 method for signature 'Views'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

S4 method for signature 'RangesList'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

S4 method for signature 'RangedData'
reduce(x, by=character(), drop.empty.ranges=FALSE,

min.gapwidth=1L, with.inframe.attrib=FALSE)

gaps()

gaps(x, start=NA, end=NA)

disjoin()

40 inter-range-methods

disjoin(x, ...)

disjointBins()

disjointBins(x, ...)

Arguments

x A Ranges, Views, RangesList, MaskCollection, or RangedData object.
... For range, additional Ranges or RangesList to consider.
na.rm Ignored.
drop.empty.ranges

TRUE or FALSE. Should empty ranges be dropped?
min.gapwidth Ranges separated by a gap of at least min.gapwidth positions are not merged.
with.revmap TRUE or FALSE. Should the mapping from reduced to original ranges be stored

in the returned object? If yes, then it is stored as metadata column "revmap" of
type IntegerList.

with.inframe.attrib

TRUE or FALSE. For internal use.
by A character vector.
start, end • If x is a Ranges or Views object: A single integer or NA. Use these arguments

to specify the interval of reference i.e. which interval the returned gaps
should be relative to.

• If x is a RangesList object: Integer vectors containing the coordinate bounds
for each RangesList top-level element.

Details

Here we start by describing how each transformation operates on a Ranges object x.

range first combines x and the arguments in If the combined IRanges object contains at least
1 range, then range returns an IRanges instance with a single range, from the minimum start to the
maximum end of the combined object. Otherwise (i.e. if the combined object contains no range),
IRanges() is returned (i.e. an IRanges instance of length 0).

If x is a RangedData object, then range returns a RangesList object resulting from calling range(ranges(x)),
i.e. the bounds of the ranges in each space.

reduce first orders the ranges in x from left to right, then merges the overlapping or adjacent ones.
If x is a RangedData object, reduce merges the ranges in each of the spaces after grouping by the
by values columns and returns the result as a RangedData containing the reduced ranges and the by
value columns.

gaps returns the "normal" Ranges object representing the set of integers that remain after the set
of integers represented by x has been removed from the interval specified by the start and end
arguments.

If x is a Views object, then start=NA and end=NA are interpreted as start=1 and end=length(subject(x)),
respectively, so, if start and end are not specified, then gaps are extracted with respect to the entire
subject.

inter-range-methods 41

disjoin returns a disjoint object, by finding the union of the end points in x. In other words, the
result consists of a range for every interval, of maximal length, over which the set of overlapping
ranges in x is the same and at least of size 1.

disjointBins segregates x into a set of bins so that the ranges in each bin are disjoint. Lower-
indexed bins are filled first. The method returns an integer vector indicating the bin index for each
range.

When x in a RangesList object, doing any of the transformation above is equivalent to applying the
transformation to each RangesList top-level element separately.

For range, if there are additional RangesList objects in ..., they are merged into x by name, if all
objects have names, otherwise, if they are all of the same length, by position. Else, an exception is
thrown.

Author(s)

H. Pages, M. Lawrence, P. Aboyoun

See Also

• intra-range-methods for intra range transformations.

• The Ranges, Views, RangesList, MaskCollection, and RangedData classes.

• The inter-range-methods man page in the GenomicRanges package for methods that operate
on GenomicRanges and other objects.

• setops-methods for set operations on IRanges objects.

• solveUserSEW for the SEW (Start/End/Width) interface.

Examples

range()

On a Ranges object:
x <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 3, 10),

width=c(5, 0, 6, 1, 4, 3, 2, 0, 3))
range(x)

On a RangesList object (XVector package required):
range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
range3 <- IRanges(start=c(-2, 6, 7), width=c(8, 0, 0)) # with empty ranges
collection <- IRangesList(one=range1, range2, range3)
if (require(XVector)) {

range(collection)
}

irl1 <- IRangesList(a=IRanges(c(1,2),c(4,3)), b=IRanges(c(4,6),c(10,7)))
irl2 <- IRangesList(c=IRanges(c(0,2),c(4,5)), a=IRanges(c(4,5),c(6,7)))
range(irl1, irl2) # matched by names
names(irl2) <- NULL

42 inter-range-methods

range(irl1, irl2) # now by position

On a RangedData object:
ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(10L, 2L, NA)
rd <- RangedData(ranges, score)
range(rd)
rd2 <- RangedData(IRanges(c(5,2,0), c(6,3,1)))
range(rd, rd2)

reduce()

On a Ranges object:
reduce(x)
y <- reduce(x, with.revmap=TRUE)
mcols(y)$revmap # an IntegerList

reduce(x, drop.empty.ranges=TRUE)
y <- reduce(x, drop.empty.ranges=TRUE, with.revmap=TRUE)
mcols(y)$revmap

Use the mapping from reduced to original ranges to split the DataFrame
of original metadata columns by reduced range:
ir0 <- IRanges(c(11:13, 2, 7:6), width=3)
mcols(ir0) <- DataFrame(id=letters[1:6], score=1:6)
ir <- reduce(ir0, with.revmap=TRUE)
ir
revmap <- mcols(ir)$revmap
revmap
relist(mcols(ir0)[unlist(revmap),], revmap) # a SplitDataFrameList

On a RangesList object. These 4 are the same:
res1 <- reduce(collection)
res2 <- IRangesList(one=reduce(range1), reduce(range2), reduce(range3))
res3 <- do.call(IRangesList, lapply(collection, reduce))
res4 <- endoapply(collection, reduce)

stopifnot(identical(res2, res1))
stopifnot(identical(res3, res1))
stopifnot(identical(res4, res1))

reduce(collection, drop.empty.ranges=TRUE)

On a RangedData object:
rd <- RangedData(

RangesList(
chrA=IRanges(start=c(1, 4, 6), width=c(3, 2, 4)),
chrB=IRanges(start=c(1, 3, 6), width=c(3, 3, 4))),

score=c(2, 7, 3, 1, 1, 1))
rd
reduce(rd)

inter-range-methods 43

gaps()

On a Ranges object:
x0 <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 10),

width=c(5, 0, 6, 1, 4, 3, 2, 3))
gaps(x0)
gaps(x0, start=-6, end=20)

On a Views object:
subject <- Rle(1:-3, 6:2)
v <- Views(subject, start=c(8, 3), end=c(14, 4))
gaps(v)

On a RangesList object. These 4 are the same:
res1 <- gaps(collection)
res2 <- IRangesList(one=gaps(range1), gaps(range2), gaps(range3))
res3 <- do.call(IRangesList, lapply(collection, gaps))
res4 <- endoapply(collection, gaps)

stopifnot(identical(res2, res1))
stopifnot(identical(res3, res1))
stopifnot(identical(res4, res1))

On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
gaps(mymasks)

disjoin()

On a Ranges object:
ir <- IRanges(c(1, 1, 4, 10), c(6, 3, 8, 10))
disjoin(ir) # IRanges(c(1, 4, 7, 10), c(3, 6, 8, 10))

On a RangesList object:
disjoin(collection)

disjointBins()

On a Ranges object:
disjointBins(IRanges(1, 5)) # 1L
disjointBins(IRanges(c(3, 1, 10), c(5, 12, 13))) # c(2L, 1L, 2L)

44 IntervalForest-class

On a RangesList object:
disjointBins(collection)

IntervalForest-class Interval Search Forests

Description

Efficiently perform overlap queries with a set of interval trees.

WARNING: IntervalForest objects are deprecated. Please use NCLists objects instead. See ?NCLists
for more information.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another. An efficient family of algorithms for answering such queries is known
as the Interval Tree. The IntervalForest class stores a set of Interval Trees corresponding to
intervals that are partitioned into disjoint sets. The most efficient way to construct IntervalForest
objects is to call the constructor below on a CompressedIRangesList object. See the IntervalTree
class for the underlying Interval Tree data structure.

A canonical example of a compressed ranges list are GenomicRanges objects, where intervals are
partitioned by their seqnames. See the GIntervalTree class to see the use of IntervalForest
objects in this case.

The simplest approach for finding overlaps is to call the findOverlaps function on a RangesList
object. See the man page of findOverlaps-methods for how to use this and other related functions.

Constructor

IntervalForest(rangesList): Creates an IntervalForest from the ranges list in rangesList, an
object coercible to CompressedIRangesList.

Accessors

length(x): Gets the number of ranges stored in the forest. This is a fast operation that does not
bring the ranges into R.

start(x): Get the starts of the ranges as a CompressedIntegerList.

end(x): Get the ends of the ranges as CompressedIntegerList.

x@partitioning: The range partitioning of class PartitioningByEnd.

names(x): Get the names of the range partitioning.

elementLengths(x): The number of ranges in each partition.

Author(s)

Hector Corrada Bravo, Michael Lawrence

IntervalTree-class 45

See Also

findOverlaps-methods for finding/counting interval overlaps between two compressed lists of
"range-based" objects, RangesList, the parent of this class, CompressedHitsList, set of hits be-
tween 2 list-like objects, GIntervalTree, which uses IntervalForest objects.

Examples

if (interactive()) {
IntervalForest objects are deprecated. Please use NCLists objects
instead. See ?NCLists for more information.
query <- IRangesList(a=IRanges(c(1,4),c(5,7)),b=IRanges(9,10))
subject <- IRangesList(a=IRanges(c(2,2),c(2,3)),b=IRanges(10,12))
forest <- IntervalForest(subject)

findOverlaps(query, forest)
}

IntervalTree-class Interval Search Trees

Description

Efficiently perform overlap queries with an interval tree.

WARNING: IntervalTree objects are deprecated. Please use NCList objects instead. See ?NCList
for more information.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another. An efficient family of algorithms for answering such queries is known
as the Interval Tree. This implementation makes use of the augmented tree algorithm from the
reference below, but heavily adapts it for the use case of large, sorted query sets.

The simplest approach for finding overlaps is to call the findOverlaps function on a Ranges or
other object with range information. See the man page of findOverlaps for how to use this and
other related functions.

An IntervalTree object is a derivative of Ranges and stores its ranges as a tree that is optimized
for overlap queries. Thus, for repeated queries against the same subject, it is more efficient to create
an IntervalTree once for the subject using the constructor described below and then perform the
queries against the IntervalTree instance.

Constructor

IntervalTree(ranges): Creates an IntervalTree from the ranges in ranges, an object coercible to
IntervalTree, such as an IRanges object.

46 IntervalTree-class

Coercion

as(from, "IRanges"): Imports the ranges in from, an IntervalTree, to an IRanges.

as(from, "IntervalTree"): Constructs an IntervalTree representing from, a Ranges object
that is coercible to IRanges.

Accessors

length(x): Gets the number of ranges stored in the tree. This is a fast operation that does not
bring the ranges into R.

start(x): Get the starts of the ranges.

end(x): Get the ends of the ranges.

Notes on Time Complexity

The cost of constructing an instance of the interval tree is a O(n*lg(n)), which makes it about as
fast as other types of overlap query algorithms based on sorting. The good news is that the tree
need only be built once per subject; this is useful in situations of frequent querying. Also, in this
implementation the data is stored outside of R, avoiding needless copying. Of course, external
storage is not always convenient, so it is possible to coerce the tree to an instance of IRanges (see
the Coercion section).

For the query operation, the running time is based on the query size m and the average number of
hits per query k. The output size is then max(mk,m), but we abbreviate this as mk. Note that when
the multiple parameter is set to FALSE, k is fixed to 1 and drops out of this analysis. We also
assume here that the query is sorted by start position (the findOverlaps function sorts the query if
it is unsorted).

An upper bound for finding overlaps is O(min(mk*lg(n),n+mk)). The fastest interval tree algo-
rithm known is bounded by O(min(m*lg(n),n)+mk) but is a lot more complicated and involves two
auxillary trees. The lower bound is Omega(lg(n)+mk), which is almost the same as for returning
the answer, Omega(mk). The average is of course somewhere in between.

This analysis informs the choice of which set of ranges to process into a tree, i.e. assigning one to
be the subject and the other to be the query. Note that if m > n, then the running time is O(m), and
the total operation of complexity O(n*lg(n) + m) is better than if m and n were exchanged. Thus,
for once-off operations, it is often most efficient to choose the smaller set to become the tree (but k
also affects this). This is reinforced by the realization that if mk is about the same in either direction,
the running time depends only on n, which should be minimized. Even in cases where a tree has
already been constructed for one of the sets, it can be more efficient to build a new tree when the
existing tree of size n is much larger than the query set of size m, roughly when n > m*lg(n).

Author(s)

Michael Lawrence

References

Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-262-
53196-8

intra-range-methods 47

See Also

findOverlaps for finding/counting interval overlaps between two "range-based" objects, Ranges,
the parent of this class, Hits, set of hits between 2 vector-like objects.

Examples

if (interactive()) {
IntervalTree objects are deprecated. Please use NCList objects
instead. See ?NCList for more information.
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
tree <- IntervalTree(subject)

findOverlaps(query, tree)

query and subject are easily interchangeable
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2), c(5, 4))
tree <- IntervalTree(subject)

t(findOverlaps(query, tree))
the same as:
findOverlaps(subject, query)

}

intra-range-methods Intra range transformations of a Ranges, Views, RangesList, or
MaskCollection object

Description

Except for threebands(), all the transformations described in this man page are endomorphisms
that operate on a single "range-based" object, that is, they transform the ranges contained in the
input object and return them in an object of the same class as the input object.

Range-based endomorphisms are grouped in 2 categories:

1. Intra range transformations like shift() that transform each range individually (and indepen-
dently of the other ranges) and return an object of the same length as the input object. Those
transformations are described in this man page.

2. Inter range transformations like reduce() that transform all the ranges together as a set to
produce a new set of ranges and return an object not necessarily of the same length as the
input object. Those transformations are described in the inter-range-methods man page (see
?`inter-range-methods`).

48 intra-range-methods

Usage

shift()
shift(x, shift=0L, use.names=TRUE)

narrow()
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

resize()
resize(x, width, fix="start", use.names=TRUE, ...)

flank()
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE, ...)

promoters()
promoters(x, upstream=2000, downstream=200, ...)

reflect()
reflect(x, bounds, use.names=TRUE)

restrict()
restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)

threebands()
threebands(x, start=NA, end=NA, width=NA)

Arguments

x A Ranges, Views, RangesList, or MaskCollection object.

shift An integer vector containing the shift information. Recycled as necessary so that
each element corresponds to a range in x. It can also be an IntegerList object if
x is a RangesList object.

use.names TRUE or FALSE. Should names be preserved?

start, end • If x is a Ranges or Views object: A vector of integers for all functions
except for flank. For restrict, the supplied start and end arguments
must be vectors of integers, eventually with NAs, that specify the restriction
interval(s). Recycled as necessary so that each element corresponds to a
range in x. Same thing for narrow and threebands, except that here start
and end must contain coordinates relative to the ranges in x. See the Details
section below. For flank, start is a logical indicating whether x should
be flanked at the start (TRUE) or the end (FALSE). Recycled as necessary so
that each element corresponds to a range in x.

• If x is a RangesList object: For flank, start must be either a logical vec-
tor or a LogicalList object indicating whether x should be flanked at the
start (TRUE) or the end (FALSE). Recycled as necessary so that each element
corresponds to a range in x. For narrow, start and end must be either
an integer vector or an IntegerList object containing coordinates relative to

intra-range-methods 49

the current ranges. For restrict, start and end must be either an integer
vector or an IntegerList object (possibly containing NA’s).

width • If x is a Ranges or Views object: For narrow and threebands, a vector
of integers, eventually with NAs. See the SEW (Start/End/Width) interface
for the details (?solveUserSEW). For resize and flank, the width of the
resized or flanking regions. Note that if both is TRUE, this is effectively
doubled. Recycled as necessary so that each element corresponds to a range
in x.

• If x is a RangesList object: For resize and flank, either an integer vec-
tor or an IntegerList object containing the width of the flanking or re-
sized regions. Recycled as necessary so that each element corresponds to a
range in x. (Note for flank: if both is TRUE, this is effectively doubled.)
For narrow, either an integer vector or a IntegerList object containing the
widths to narrow to. See the SEW (Start/End/Width) interface for the de-
tails (?solveUserSEW).

both If TRUE, extends the flanking region width positions into the range. The resulting
range thus straddles the end point, with width positions on either side.

bounds An IRanges object to serve as the reference bounds for the reflection, see below.

fix • If x is a Ranges or Views object: A character vector or character-Rle of
length 1 or length(x) containing the values "start", "end", and "center"
denoting what to use as an anchor for each element in x.

• If x is a RangesList object: A character vector of length 1, a CharacterList
object, or a character-RleList object containing the values "start", "end",
and "center" denoting what to use as an anchor for each element in x.

upstream, downstream

Single integer values >= 0L. upstream defines the number of nucleotides to-
ward the 5’ end and downstream defines the number toward the 3’ end, relative
to the transcription start site. Promoter regions are formed by merging the up-
stream and downstream ranges.
Default values for upstream and downstream were chosen based on our current
understanding of gene regulation. On average, promoter regions in the mam-
malian genome are 5000 bp upstream and downstream of the transcription start
site.

keep.all.ranges

TRUE or FALSE. Should ranges that don’t overlap with the restriction interval(s)
be kept? Note that "don’t overlap" means that they end strictly before start - 1
or start strictly after end + 1. Ranges that end at start - 1 or start at end + 1
are always kept and their width is set to zero in the returned IRanges object.

... Additional arguments for methods.

Details

Here we start by describing how each transformation operates on a Ranges object x.

shift shifts all the ranges in x by the amount specified by the shift argument.

narrow narrows the ranges in x i.e. each range in the returned Ranges object is a subrange of the cor-
responding range in x. The supplied start/end/width values are solved by a call to solveUserSEW(width(x), start=start, end=end, width=width)

50 intra-range-methods

and therefore must be compliant with the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details). Then each subrange is derived from the original range according to the solved
start/end/width values for this range. Note that those solved values are interpreted relatively to the
original range.

resize resizes the ranges to the specified width where either the start, end, or center is used as an
anchor.

flank generates flanking ranges for each range in x. If start is TRUE for a given range, the flanking
occurs at the start, otherwise the end. The widths of the flanks are given by the width parameter.
The widths can be negative, in which case the flanking region is reversed so that it represents a
prefix or suffix of the range in x. The flank operation is illustrated below for a call of the form
flank(x, 3, TRUE), where x indicates a range in x and - indicates the resulting flanking region:

---xxxxxxx

If start were FALSE:

xxxxxxx---

For negative width, i.e. flank(x, -3, FALSE), where * indicates the overlap between x and the
result:

xxxx***

If both is TRUE, then, for all ranges in x, the flanking regions are extended into (or out of, if width
is negative) the range, so that the result straddles the given endpoint and has twice the width given
by width. This is illustrated below for flank(x, 3, both=TRUE):

---***xxxx

promoters generates promoter ranges for each range in x relative to the transcription start site
(TSS), where TSS is start(x). The promoter range is expanded around the TSS according to the
upsteam and downstream arguments. upstream represents the number of nucleotides in the 5’
direction and downstream the number in the 3’ direction. The full range is defined as, (start(x) - up-
stream) to (start(x) + downstream - 1). For documentation for using promoters on GenomicRanges
objects see ?"promoters,GRanges-method".

reflect "reflects" or reverses each range in x relative to the corresponding range in bounds, which
is recycled as necessary. Reflection preserves the width of a range, but shifts it such the distance
from the left bound to the start of the range becomes the distance from the end of the range to the
right bound. This is illustrated below, where x represents a range in x and [and] indicate the
bounds:

[..xxx.....]
becomes
[.....xxx..]

intra-range-methods 51

restrict restricts the ranges in x to the interval(s) specified by the start and end arguments.

threebands extends the capability of narrow by returning the 3 ranges objects associated to the
narrowing operation. The returned value y is a list of 3 ranges objects named "left", "middle" and
"right". The middle component is obtained by calling narrow with the same arguments (except
that names are dropped). The left and right components are also instances of the same class as x and
they contain what has been removed on the left and right sides (respectively) of the original ranges
during the narrowing.

Note that original object x can be reconstructed from the left and right bands with punion(y$left, y$right, fill.gap=TRUE).

When x in a RangesList object, doing any of the transformation above is equivalent to applying the
transformation to each RangesList top-level element separately.

Author(s)

H. Pages, M. Lawrence, P. Aboyoun

See Also

• inter-range-methods for inter range transformations.

• The Ranges, Views, RangesList, and MaskCollection classes.

• The intra-range-methods man page in the XVector package for methods that operate on XVec-
torList objects.

• The intra-range-methods man page in the GenomicRanges package for methods that operate
on GenomicRanges and other objects.

• setops-methods for set operations on IRanges objects.

• solveUserSEW for the SEW (Start/End/Width) interface.

Examples

shift()

On a Ranges object
ir1 <- successiveIRanges(c(19, 5, 0, 8, 5))
ir1
shift(ir1, shift=-3)

On a RangesList object
range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
range3 <- IRanges(start=c(-2, 6, 7), width=c(8, 0, 0)) # with empty ranges
collection <- IRangesList(one=range1, range2, range3)
shift(collection, shift=5)

narrow()

52 intra-range-methods

On a Ranges object
ir2 <- ir1[width(ir1) != 0]
narrow(ir2, start=4, end=-2)
narrow(ir2, start=-4, end=-2)
narrow(ir2, end=5, width=3)
narrow(ir2, start=c(3, 4, 2, 3), end=c(12, 5, 7, 4))

On a RangesList object
narrow(collection[-3], start=2)
narrow(collection[-3], end=-2)

On a MaskCollection object
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
narrow(mymasks, start=8)

resize()

On a Ranges object
resize(ir2, 200)
resize(ir2, 2, fix="end")

On a RangesList object
resize(collection, width=200)

flank()

On a Ranges object
ir3 <- IRanges(c(2,5,1), c(3,7,3))
flank(ir3, 2)
flank(ir3, 2, start=FALSE)
flank(ir3, 2, start=c(FALSE, TRUE, FALSE))
flank(ir3, c(2, -2, 2))
flank(ir3, 2, both = TRUE)
flank(ir3, 2, start=FALSE, both=TRUE)
flank(ir3, -2, start=FALSE, both=TRUE)

On a RangesList object
flank(collection, width=10)

promoters()

On a Ranges object
ir4 <- IRanges(20:23, width=3)

IRanges-class 53

promoters(ir4, upstream=0, downstream=0) ## no change
promoters(ir4, upstream=0, downstream=1) ## start value only
promoters(ir4, upstream=1, downstream=0) ## single upstream nucleotide

On a RangesList object
promoters(collection, upstream=5, downstream=2)

reflect()

On a Ranges object
bounds <- IRanges(c(0, 5, 3), c(10, 6, 9))
reflect(ir3, bounds)

reflect() does not yet support RangesList objects!

restrict()

On a Ranges object
restrict(ir1, start=12, end=34)
restrict(ir1, start=20)
restrict(ir1, start=21)
restrict(ir1, start=21, keep.all.ranges=TRUE)

On a RangesList object
restrict(collection, start=2, end=8)

threebands()

On a Ranges object
z <- threebands(ir2, start=4, end=-2)
ir2b <- punion(z$left, z$right, fill.gap=TRUE)
stopifnot(identical(ir2, ir2b))
threebands(ir2, start=-5)

threebands() does not support RangesList objects.

IRanges-class IRanges and NormalIRanges objects

Description

The IRanges class is a simple implementation of the Ranges container where 2 integer vectors of
the same length are used to store the start and width values. See the Ranges virtual class for a formal
definition of Ranges objects and for their methods (all of them should work for IRanges objects).

54 IRanges-class

Some subclasses of the IRanges class are: NormalIRanges, Views, etc...

A NormalIRanges object is just an IRanges object that is guaranteed to be "normal". See the Nor-
mality section in the man page for Ranges objects for the definition and properties of "normal"
Ranges objects.

Constructor

See ?`IRanges-constructor`.

Coercion

as(from, "IRanges"): Creates an IRanges instance from a Ranges object, logical vector, or
integer vector. When from is a logical vector, the resulting IRanges object contains the indices
for the runs of TRUE values. When from is an integer vector, the elements are either singletons
or "increase by 1" sequences.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical or integer vec-
tor. When from is an integer vector, the elements must be strictly increasing.

Combining

c(x, ..., ignore.mcols=FALSE) Combining IRanges objects is straightforward when they do
not have any metadata columns. If only one of the IRanges object has metadata columns,
then the corresponding metadata columns are attached to the other IRanges object and set to
NA. When multiple IRanges object have their own metadata columns, the user must ensure
that each such linkS4class{DataFrame} have identical layouts to each other (same columns
defined), in order for the combination to be successful, otherwise an error will be thrown.
The user can call c(x, ..., ignore.mcols=TRUE) in order to combine IRanges objects
with differing sets of metadata columns, which will result in the combined object having NO
metadata columns.

Methods for NormalIRanges objects

max(x): The maximum value in the finite set of integers represented by x.

min(x): The minimum value in the finite set of integers represented by x.

Author(s)

H. Pages

See Also

Ranges-class,

IRanges-constructor, IRanges-utils,

intra-range-methods for intra range transformations,

inter-range-methods for inter range transformations,

setops-methods

IRanges-constructor 55

Examples

showClass("IRanges") # shows (some of) the known subclasses

A. MANIPULATING IRanges OBJECTS

All the methods defined for Ranges objects work on IRanges objects.
See ?Ranges for some examples.
Also see ?`IRanges-utils` and ?`setops-methods` for additional
operations on IRanges objects.

Combining IRanges objects
ir1 <- IRanges(c(1, 10, 20), width=5)
mcols(ir1) <- DataFrame(score=runif(3))
ir2 <- IRanges(c(101, 110, 120), width=10)
mcols(ir2) <- DataFrame(score=runif(3))
ir3 <- IRanges(c(1001, 1010, 1020), width=20)
mcols(ir3) <- DataFrame(value=runif(3))
some.iranges <- c(ir1, ir2)
all.iranges <- c(ir1, ir2, ir3) ## This will raise an error
all.iranges <- c(ir1, ir2, ir3, ignore.mcols=TRUE)
stopifnot(is.null(mcols(all.iranges)))

B. A NOTE ABOUT PERFORMANCE

Using an IRanges object for storing a big set of ranges is more
efficient than using a standard R data frame:
N <- 2000000L # nb of ranges
W <- 180L # width of each range
start <- 1L
end <- 50000000L
set.seed(777)
range_starts <- sort(sample(end-W+1L, N))
range_widths <- rep.int(W, N)
Instantiation is faster
system.time(x <- IRanges(start=range_starts, width=range_widths))
system.time(y <- data.frame(start=range_starts, width=range_widths))
Subsetting is faster
system.time(x16 <- x[c(TRUE, rep.int(FALSE, 15))])
system.time(y16 <- y[c(TRUE, rep.int(FALSE, 15)),])
Internal representation is more compact
object.size(x16)
object.size(y16)

IRanges-constructor The IRanges constructor and supporting functions

56 IRanges-constructor

Description

The IRanges function is a constructor that can be used to create IRanges instances.

solveUserSEW0 and solveUserSEW are utility functions that solve a set of user-supplied start/end/width
values.

Usage

IRanges constructor:
IRanges(start=NULL, end=NULL, width=NULL, names=NULL)

Supporting functions (not for the end user):
solveUserSEW0(start=NULL, end=NULL, width=NULL)
solveUserSEW(refwidths, start=NA, end=NA, width=NA,

rep.refwidths=FALSE,
translate.negative.coord=TRUE,
allow.nonnarrowing=FALSE)

Arguments

start, end, width

For IRanges and solveUserSEW0: NULL, or vector of integers (eventually with
NAs).
For solveUserSEW: vector of integers (eventually with NAs).

names A character vector or NULL.

refwidths Vector of non-NA non-negative integers containing the reference widths.

rep.refwidths TRUE or FALSE. Use of rep.refwidths=TRUE is supported only when refwidths
is of length 1.

translate.negative.coord, allow.nonnarrowing

TRUE or FALSE.

IRanges constructor

Return the IRanges object containing the ranges specified by start, end and width. Input falls into
one of two categories:

Category 1 start, end and width are numeric vectors (or NULLs). If necessary they are recycled
to the length of the longest (NULL arguments are filled with NAs). After this recycling, each
row in the 3-column matrix obtained by binding those 3 vectors together is "solved" i.e. NAs
are treated as unknown in the equation end = start + width - 1. Finally, the solved matrix
is returned as an IRanges instance.

Category 2 The start argument is a logical vector or logical Rle object and IRanges(start)
produces the same result as as(start, "IRanges"). Note that, in that case, the returned
IRanges instance is guaranteed to be normal.

Note that the names argument is never recycled (to remain consistent with what `names<-` does on
standard vectors).

IRanges-constructor 57

Supporting functions

solveUserSEW0(start=NULL, end=NULL, width=NULL):

solveUserSEW(refwidths, start=NA, end=NA, width=NA, rep.refwidths=FALSE, translate.negative.coord=TRUE, allow.nonnarrowing=FALSE):
Use of rep.refwidths=TRUE is supported only when refwidths is of length 1. If rep.refwidths=FALSE
(the default) then start, end and width are recycled to the length of refwidths (it’s an error
if one of them is longer than refwidths, or is of zero length while refwidths is not). If
rep.refwidths=TRUE then refwidths is first replicated L times where L is the length of the
longest of start, end and width. After this replication, start, end and width are recycled
to the new length of refwidths (L) (it’s an error if one of them is of zero length while L is !=
0).
From now, refwidths, start, end and width are integer vectors of equal lengths. Each
row in the 3-column matrix obtained by binding those 3 vectors together must contain at
least one NA (otherwise an error is returned). Then each row is "solved" i.e. the 2 following
transformations are performed (i is the indice of the row): (1) if translate.negative.coord
is TRUE then a negative value of start[i] or end[i] is considered to be a -refwidths[i]-
based coordinate so refwidths[i]+1 is added to it to make it 1-based; (2) the NAs in the row
are treated as unknowns which values are deduced from the known values in the row and from
refwidths[i].
The exact rules for (2) are the following. Rule (2a): if the row contains at least 2 NAs, then
width[i] must be one of them (otherwise an error is returned), and if start[i] is one of
them it is replaced by 1, and if end[i] is one of them it is replaced by refwidths[i], and
finally width[i] is replaced by end[i] - start[i] + 1. Rule (2b): if the row contains
only 1 NA, then it is replaced by the solution of the width[i] == end[i] - start[i] + 1
equation.
Finally, the set of solved rows is returned as an IRanges object of the same length as refwidths
(after replication if rep.refwidths=TRUE).
Note that an error is raised if either (1) the set of user-supplied start/end/width values is
invalid or (2) allow.nonnarrowing is FALSE and the ranges represented by the solved
start/end/width values are not narrowing the ranges represented by the user-supplied start/end/width
values.

Author(s)

H. Pages

See Also

IRanges-class, narrow

Examples

A. USING THE IRanges() CONSTRUCTOR

IRanges(start=11, end=rep.int(20, 5))
IRanges(start=11, width=rep.int(20, 5))
IRanges(-2, 20) # only one range
IRanges(start=c(2, 0, NA), end=c(NA, NA, 14), width=11:0)

58 IRanges-utils

IRanges() # IRanges instance of length zero
IRanges(names=character())

With logical input:
x <- IRanges(c(FALSE, TRUE, TRUE, FALSE, TRUE)) # logical vector input
isNormal(x) # TRUE
x <- IRanges(Rle(1:30) %% 5 <= 2) # logical Rle input
isNormal(x) # TRUE

B. USING solveUserSEW()

refwidths <- c(5:3, 6:7)
refwidths

solveUserSEW(refwidths)
solveUserSEW(refwidths, start=4)
solveUserSEW(refwidths, end=3, width=2)
solveUserSEW(refwidths, start=-3)
solveUserSEW(refwidths, start=-3, width=2)
solveUserSEW(refwidths, end=-4)

The start/end/width arguments are recycled:
solveUserSEW(refwidths, start=c(3, -4, NA), end=c(-2, NA))

Using 'rep.refwidths=TRUE':
solveUserSEW(10, start=-(1:6), rep.refwidths=TRUE)
solveUserSEW(10, end=-(1:6), width=3, rep.refwidths=TRUE)

IRanges-utils IRanges utility functions

Description

Utility functions for creating or modifying IRanges objects.

Usage

Create an IRanges instance:
successiveIRanges(width, gapwidth=0, from=1)
breakInChunks(totalsize, chunksize, nchunk)

Turn a logical vector into a set of ranges:
whichAsIRanges(x)

Coercion:
asNormalIRanges(x, force=TRUE)

IRanges-utils 59

Arguments

width A vector of non-negative integers (with no NAs) specifying the widths of the
ranges to create.

gapwidth A single integer or an integer vector with one less element than the width vector
specifying the widths of the gaps separating one range from the next one.

from A single integer specifying the starting position of the first range.

totalsize A single non-negative integer. The total size of the object to break.

chunksize A single positive integer. The size of the chunks (last chunk might be smaller).

nchunk A single positive integer. The number of chunks.

x A logical vector for whichAsIRanges. An IRanges object for asNormalIRanges.

force TRUE or FALSE. Should x be turned into a NormalIRanges object even if isNormal(x)
is FALSE?

Details

successiveIRanges returns an IRanges instance containing the ranges that have the widths speci-
fied in the width vector and are separated by the gaps specified in gapwidth. The first range starts
at position from. When gapwidth=0 and from=1 (the defaults), the returned IRanges can be seen
as a partitioning of the 1:sum(width) interval. See ?Partitioning for more details on this.

whichAsIRanges returns an IRanges instance containing all of the ranges where x is TRUE.

If force=TRUE (the default), then asNormalIRanges will turn x into a NormalIRanges instance by
reordering and reducing the set of ranges if necessary (i.e. only if isNormal(x) is FALSE, otherwise
the set of ranges will be untouched). If force=FALSE, then asNormalIRanges will turn x into a
NormalIRanges instance only if isNormal(x) is TRUE, otherwise it will raise an error. Note that
when force=FALSE, the returned object is guaranteed to contain exactly the same set of ranges than
x. as(x, "NormalIRanges") is equivalent to asNormalIRanges(x, force=TRUE).

Author(s)

H. Pages

See Also

Ranges-class, IRanges-class,

intra-range-methods for intra range transformations,

inter-range-methods for inter range transformations,

setops-methods, solveUserSEW, successiveViews

Examples

vec <- as.integer(c(19, 5, 0, 8, 5))

successiveIRanges(vec)

breakInChunks(600999, 50000) # 13 chunks of size 50000 (last chunk is

60 IRangesList-class

smaller).

whichAsIRanges(vec >= 5)

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c(5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

asNormalIRanges(x) # 3 non-empty ranges ordered from left to right and
separated by gaps of width >= 1.

More on normality:
example(`IRanges-class`)
isNormal(x16) # FALSE
if (interactive())

x16 <- asNormalIRanges(x16) # Error!
whichFirstNotNormal(x16) # 57
isNormal(x16[1:56]) # TRUE
xx <- asNormalIRanges(x16[1:56])
class(xx)
max(xx)
min(xx)

IRangesList-class List of IRanges and NormalIRanges

Description

IRangesList and NormalIRangesList objects for storing IRanges and NormalIRanges objects
respectively.

Constructor

IRangesList(..., universe = NULL, compress = TRUE): The ... argument accepts either a
comma-separated list of IRanges objects, or a single LogicalList / logical RleList object,
or 2 elements named start and end each of them being either a list of integer vectors or an
IntegerList object. When IRanges objects are supplied, each of them becomes an element
in the new IRangesList, in the same order, which is analogous to the list constructor. If
compress, the internal storage of the data is compressed.

Coercion

unlist(x): Unlists x, an IRangesList, by concatenating all of the ranges into a single IRanges
instance. If the length of x is zero, an empty IRanges is returned.

Methods for NormalIRangesList objects

max(x): An integer vector containing the maximum values of each of the elements of x.

min(x): An integer vector containing the minimum values of each of the elements of x.

List-class-leftovers 61

Author(s)

Michael Lawrence

See Also

RangesList, the parent of this class, for more functionality.

intra-range-methods and inter-range-methods for intra and inter range transformations of IRanges-
List objects.

setops-methods for set operations on IRangesList objects.

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- IRangesList(one = range1, two = range2)
length(named) # 2
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- IRangesList(range1, range2)
names(unnamed) # NULL

x <- IRangesList(start=list(c(1,2,3), c(15,45,20,1)),
end=list(c(5,2,8), c(15,100,80,5)))

as.list(x)

List-class-leftovers List objects (old man page)

Description

IMPORTANT NOTE - 9/4/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for List objects located in the S4Vectors
package.

Details

The only thing left here is the documentation of the stack method for List objects. In the code
snippets below, x is a List object.

stack(x, index.var = "name", value.var = "value"): As with stack on a list, constructs
a DataFrame with two columns: one for the unlisted values, the other indicating the name of
the element from which each value was obtained. index.var specifies the column name for
the index (source name) column and value.var specifies the column name for the values.

See Also

• The List class defined and documented in the S4Vectors package.

62 mapCoords-methods

Examples

starts <- IntegerList(c(1, 5), c(2, 8))
ends <- IntegerList(c(3, 8), c(5, 9))
rgl <- IRangesList(start=starts, end=ends)
rangeDataFrame <- stack(rgl, "space", "ranges")

mapCoords-methods Mapping of ranges to another sequence

Description

DEPRECATED! Use mapToTranscripts from the GenomicFeatures package or mapToAlignments
from the GenomicAlignments package instead.

The mapCoords generic converts a set of ranges to the equivalent ranges on another sequence
through some sort of alignment between sequences. The output is an object of the same class
as from and in general will contain the mapped ranges with the matching data as metadata. Match-
ing data are the result of calling findOverlaps with type = "within". This operation matches
each input range to a destination sequence (useful when the alignment is one/many to many).

The pmapCoords function is simpler: it treats the two inputs as parallel vectors, maps each input
range via the corresponding alignment, and returns the mapped ranges. There is one result per input
element, instead of the many-to-many result from mapCoords.

Usage

mapCoords(from, to, ...)
pmapCoords(from, to, ...)

Arguments

from Typically an object containing ranges to map.

to Typically an object representing an alignment.

... Arguments to pass to methods

Value

An object the same class as from.

In the case of mapCoords, the result of findOverlaps with type = “within“ are included as metadata
columns (‘queryHits‘ and ‘subjectHits‘).

Author(s)

Michael Lawrence

MaskCollection-class 63

See Also

• See ?`mapCoords-methods` in the GenomicRanges package for the mapCoords method on
GRanges objects

• See ?`mapCoords-methods` in the GenomicAlignments package for the mapCoords method
on GAlignments objects

Examples

DEPRECATED! See ?mapToTranscripts in the GenomicFeatures package and
?mapToAlignments in the GenomicAlignments package.

MaskCollection-class MaskCollection objects

Description

The MaskCollection class is a container for storing a collection of masks that can be used to mask
regions in a sequence.

Details

In the context of the Biostrings package, a mask is a set of regions in a sequence that need to be ex-
cluded from some computation. For example, when calling alphabetFrequency or matchPattern
on a chromosome sequence, you might want to exclude some regions like the centromere or the
repeat regions. This can be achieved by putting one or several masks on the sequence before calling
alphabetFrequency on it.

A MaskCollection object is a vector-like object that represents such set of masks. Like standard
R vectors, it has a "length" which is the number of masks contained in it. But unlike standard R
vectors, it also has a "width" which determines the length of the sequences it can be "put on". For
example, a MaskCollection object of width 20000 can only be put on an XString object of 20000
letters.

Each mask in a MaskCollection object x is just a finite set of integers that are >= 1 and <= width(x).
When "put on" a sequence, these integers indicate the positions of the letters to mask. Internally,
each mask is represented by a NormalIRanges object.

Basic accessor methods

In the code snippets below, x is a MaskCollection object.

length(x): The number of masks in x.

width(x): The common with of all the masks in x. This determines the length of the sequences
that x can be "put on".

active(x): A logical vector of the same length as x where each element indicates whether the
corresponding mask is active or not.

names(x): NULL or a character vector of the same length as x.

64 MaskCollection-class

desc(x): NULL or a character vector of the same length as x.

nir_list(x): A list of the same length as x, where each element is a NormalIRanges object
representing a mask in x.

Constructor

Mask(mask.width, start=NULL, end=NULL, width=NULL): Return a single mask (i.e. a
MaskCollection object of length 1) of width mask.width (a single integer >= 1) and mask-
ing the ranges of positions specified by start, end and width. See the IRanges constructor
(?IRanges) for how start, end and width can be specified. Note that the returned mask is
active and unnamed.

Other methods

In the code snippets below, x is a MaskCollection object.

isEmpty(x): Return a logical vector of the same length as x, indicating, for each mask in x,
whether it’s empty or not.

max(x): The greatest (or last, or rightmost) masked position for each mask. This is a numeric
vector of the same length as x.

min(x): The smallest (or first, or leftmost) masked position for each mask. This is a numeric
vector of the same length as x.

maskedwidth(x): The number of masked position for each mask. This is an integer vector of the
same length as x where all values are >= 0 and <= width(x).

maskedratio(x): maskedwidth(x) / width(x)

Subsetting and appending

In the code snippets below, x and values are MaskCollection objects.

x[i]: Return a new MaskCollection object made of the selected masks. Subscript i can be a
numeric, logical or character vector.

x[[i, exact=TRUE]]: Extract the mask selected by i as a NormalIRanges object. Subscript i
can be a single integer or a character string.

append(x, values, after=length(x)): Add masks in values to x.

Other methods

In the code snippets below, x is a MaskCollection object.

collapse(x): Return a MaskCollection object of length 1 obtained by collapsing all the active
masks in x.

Author(s)

H. Pages

multisplit 65

See Also

NormalIRanges-class, read.Mask, MaskedXString-class, reverse, alphabetFrequency, matchPattern

Examples

Making a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
length(mymasks)
width(mymasks)
collapse(mymasks)

Names and descriptions:
names(mymasks) <- c("A", "B", "C") # names should be short and unique...
mymasks
mymasks[c("C", "A")] # ...to make subsetting by names easier
desc(mymasks) <- c("you can be", "more verbose", "here")
mymasks[-2]

Activate/deactivate masks:
active(mymasks)["B"] <- FALSE
mymasks
collapse(mymasks)
active(mymasks) <- FALSE # deactivate all masks
mymasks
active(mymasks)[-1] <- TRUE # reactivate all masks except mask 1
active(mymasks) <- !active(mymasks) # toggle all masks

Other advanced operations:
mymasks[[2]]
length(mymasks[[2]])
mymasks[[2]][-3]
append(mymasks[-2], gaps(mymasks[2]))

multisplit Split elements belonging to multiple groups

Description

This is like split, except elements can belong to multiple groups, in which case they are repeated
to appear in multiple elements of the return value.

Usage

multisplit(x, f)

66 NCList-class

Arguments

x The object to split, like a vector.
f A list-like object of vectors, the same length as x, where each element indicates

the groups to which each element of x belongs.

Value

A list-like object, with an element for each unique value in the unlisted f, containing the elements
in x where the corresponding element in f contained that value. Just try it.

Author(s)

Michael Lawrence

Examples

multisplit(1:3, list(letters[1:2], letters[2:3], letters[2:4]))

NCList-class Nested Containment List objects

Description

The NCList class is a container for storing the Nested Containment List representation of a Ranges
object. Preprocessing a Ranges object as a Nested Containment List allows efficient overlap-based
operations like findOverlaps.

The NCLists class is a container for storing a collection of NCList objects. An NCLists object
is typically the result of preprocessing each list element of a RangesList object as a Nested Con-
tainment List. Like with NCList, the NCLists object can then be used for efficient overlap-based
operations.

To preprocess a Ranges or RangesList object, simply call the NCList or NCLists constructor func-
tion on it.

Usage

NCList(x, circle.length=NA_integer_)
NCLists(x, circle.length=NA_integer_)

Arguments

x The Ranges or RangesList object to preprocess.
circle.length Use only if the space (or spaces if x is a RangesList object) on top of which the

ranges in x are defined needs (need) to be considered circular. If that’s the case,
then use circle.length to specify the length(s) of the circular space(s).
For NCList, circle.length must be a single positive integer (or NA if the
space is linear).
For NCLists, it must be an integer vector parallel to x (i.e. same length) and
with positive or NA values (NAs indicate linear spaces).

NCList-class 67

Details

The GenomicRanges package also defines the GNCList constructor and class for preprocessing and
representing a vector of genomic ranges as a data structure based on Nested Containment Lists.

Note that NCList, NCLists, and GNCList objects, are replacements for IntervalTree, IntervalForest,
and GIntervalTree objects, respectively. The latter are deprecated starting with BioC 3.1.

Some important differences between the new findOverlaps/countOverlaps implementation based on
Nested Containment Lists and the old implementation based on Interval Trees:

• With the new implementation, the hits returned by findOverlaps are not fully ordered (i.e.
ordered by queryHits and subject Hits) anymore, but only partially ordered (i.e. ordered by
queryHits only). Other than that, and except for the 3 particular situations mentioned below,
the 2 implementations produce the same output. However, the new implementation is faster
and more memory efficient.

• With the new implementation, either the query or the subject can be preprocessed with NCList
for a Ranges object (replacement for IntervalTree), NCLists for a RangesList object (re-
placement for IntervalForest), and GNCList for a GenomicRanges object (replacement for
GIntervalTree). However, for a one time use, it is NOT advised to explicitely preprocess the
input. This is because findOverlaps or countOverlaps will take care of it and do a better
job at it (by preprocessing only what’s needed when it’s needed, and releasing memory as they
go).

• With the new implementation, countOverlaps on Ranges or GenomicRanges objects doesn’t
call findOverlaps in order to collect all the hits in a growing Hits object and count them only
at the end. Instead, the counting happens at the C level and the hits are not kept. This reduces
memory usage considerably when there is a lot of hits.

• When minoverlap=0, zero-width ranges are now interpreted as insertion points and consid-
ered to overlap with ranges that contain them. With the old alogrithm, zero-width ranges were
always ignored. This is the 1st situation where the new and old implementations produce
different outputs.

• When using select="arbitrary", the new implementation will generally not select the same
hits as the old implementation. This is the 2nd situation where the new and old implementa-
tions produce different outputs.

• With the old implementation, maxgap had a special meaning when type was set to "start",
"end", "within", or "equal". With the new implementation, this special meaning is still
being used but only when type is set to "start" or "end". If maxgap’s special meaning
when type is "within" or "equal" seems useful to you, please say hello on our support site
(https://support.bioconductor.org/) or on the bioc-devel mailing list. Anyway, this is
the 3rd situation where the new and old implementations produce different outputs.

• The new implementation supports preprocessing of a GenomicRanges object with ranges de-
fined on circular sequences (e.g. on the mitochnodrial chromosome). See GNCList in the
GenomicRanges package for some examples.

• Objects preprocessed with NCList, NCLists, and GNCList are serializable (with save) for
later use. Not a typical thing to do though, because preprocessing is very cheap (i.e. very fast
and memory efficient).

Value

An NCList object for the NCList constructor and an NCLists object for the NCLists constructor.

https://support.bioconductor.org/

68 nearest-methods

Author(s)

H. Pages

References

Alexander V. Alekseyenko and Christopher J. Lee – Nested Containment List (NCList): a new al-
gorithm for accelerating interval query of genome alignment and interval databases. Bioinformatics
(2007) 23 (11): 1386-1393. doi: 10.1093/bioinformatics/btl647

See Also

• The GNCList constructor and class defined in the GenomicRanges package.

• findOverlaps for finding/counting interval overlaps between two range-based objects.

• Ranges and RangesList objects.

Examples

The example below is for illustration purpose only and does NOT
reflect typical usage. This is because, for a one time use, it is
NOT advised to explicitely preprocess the input for findOverlaps()
or countOverlaps(). These functions will take care of it and do a
better job at it (by preprocessing only what's needed when it's
needed, and release memory as they go).

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))

Either the query or the subject of findOverlaps() can be preprocessed:

ppsubject <- NCList(subject)
hits1 <- findOverlaps(query, ppsubject)
hits1

ppquery <- NCList(query)
hits2 <- findOverlaps(ppquery, subject)
hits2

Note that 'hits1' and 'hits2' contain the same hits but not in the
same order.
stopifnot(identical(sort(hits1), sort(hits2)))

nearest-methods Finding the nearest range neighbor

Description

The nearest, precede, follow, distance and distanceToNearest methods for Ranges objects
and subclasses.

nearest-methods 69

Usage

S4 method for signature 'Ranges,RangesORmissing'
nearest(x, subject, select = c("arbitrary", "all"),

algorithm = c("nclist", "intervaltree"))

S4 method for signature 'Ranges,RangesORmissing'
precede(x, subject, select = c("first", "all"))

S4 method for signature 'Ranges,RangesORmissing'
follow(x, subject, select = c("last", "all"))

S4 method for signature 'Ranges,RangesORmissing'
distanceToNearest(x, subject, select = c("arbitrary", "all"),

algorithm = c("nclist", "intervaltree"))

S4 method for signature 'Ranges,Ranges'
distance(x, y)

Arguments

x The query Ranges instance.

subject The subject Ranges instance, within which the nearest neighbors are found. Can
be missing, in which case x is also the subject.

select Logic for handling ties. By default, all the methods select a single interval (ar-
bitrary for nearest,the first by order in subject for precede, and the last for
follow). To get all matchings, as a Hits object, use “all”.

algorithm This argument is passed to findOverlaps, which nearest and distanceToNearest
use internally. See ?findOverlaps for more information. Note that it will be
removed in BioC 3.3 so please don’t use it unless you have a good reason to do
so (e.g. troubleshooting).

y For the distance method, a Ranges instance. Cannot be missing. If x and y
are not the same length, the shortest will be recycled to match the length of the
longest.

... Additional arguments for methods

Details

• nearest: The conventional nearest neighbor finder. Returns a integer vector containing the
index of the nearest neighbor range in subject for each range in x. If there is no nearest
neighbor (if subject is empty), NA’s are returned.
Here is roughly how it proceeds, for a range xi in x:

1. Find the ranges in subject that overlap xi. If a single range si in subject overlaps xi,
si is returned as the nearest neighbor of xi. If there are multiple overlaps, one of the
overlapping ranges is chosen arbitrarily.

2. If no ranges in subject overlap with xi, then the range in subject with the shortest
distance from its end to the start xi or its start to the end of xi is returned.

70 nearest-methods

• precede: For each range in x, precede returns the index of the interval in subject that is
directly preceded by the query range. Overlapping ranges are excluded. NA is returned when
there are no qualifying ranges in subject.

• follow: The opposite of precede, this function returns the index of the range in subject that
a query range in x directly follows. Overlapping ranges are excluded. NA is returned when
there are no qualifying ranges in subject.

• distanceToNearest: Returns the distance for each range in x to its nearest neighbor in subject.

• distance: Returns the distance for each range in x to the range in y.
The distance method differs from others documented on this page in that it is symmetric;
y cannot be missing. If x and y are not the same length, the shortest will be recycled to
match the length of the longest. The select argument is not available for distance because
comparisons are made in a pair-wise fashion. The return value is the length of the longest of
x and y.
The distance calculation changed in BioC 2.12 to accommodate zero-width ranges in a con-
sistent and intuitive manner. The new distance can be explained by a block model where a
range is represented by a series of blocks of size 1. Blocks are adjacent to each other and there
is no gap between them. A visual representation of IRanges(4,7) would be

+-----+-----+-----+-----+
4 5 6 7

The distance between two consecutive blocks is 0L (prior to Bioconductor 2.12 it was 1L).
The new distance calculation now returns the size of the gap between two ranges.
This change to distance affects the notion of overlaps in that we no longer say:
x and y overlap <=> distance(x, y) == 0
Instead we say
x and y overlap => distance(x, y) == 0
or
x and y overlap or are adjacent <=> distance(x, y) == 0

Value

For nearest, precede and follow, an integer vector of indices in subject, or a Hits if select="all".

For distanceToNearest, a Hits object with an elementMetadata column of the distance between
the pair. Access distance with mcols accessor.

For distance, an integer vector of distances between the ranges in x and y.

Author(s)

M. Lawrence

See Also

• The Ranges and Hits classes.

• The GenomicRanges and GRanges classes in the GenomicRanges package.

• findOverlaps for finding just the overlapping ranges.

RangedData-class 71

• GenomicRanges methods for

– precede

– follow

– nearest

– distance

– distanceToNearest

are documented at ?nearest-methods or ?precede,GenomicRanges,GenomicRanges-method

Examples

--
precede() and follow()
--
query <- IRanges(c(1, 3, 9), c(3, 7, 10))
subject <- IRanges(c(3, 2, 10), c(3, 13, 12))

precede(query, subject) # c(3L, 3L, NA)
precede(IRanges(), subject) # integer()
precede(query, IRanges()) # rep(NA_integer_, 3)
precede(query) # c(3L, 3L, NA)

follow(query, subject) # c(NA, NA, 1L)
follow(IRanges(), subject) # integer()
follow(query, IRanges()) # rep(NA_integer_, 3)
follow(query) # c(NA, NA, 2L)

--
nearest()
--
query <- IRanges(c(1, 3, 9), c(2, 7, 10))
subject <- IRanges(c(3, 5, 12), c(3, 6, 12))

nearest(query, subject) # c(1L, 1L, 3L)
nearest(query) # c(2L, 1L, 2L)

--
distance()
--
adjacent
distance(IRanges(1,5), IRanges(6,10)) # 0L
overlap
distance(IRanges(1,5), IRanges(3,7)) # 0L
zero-width
sapply(-3:3, function(i) distance(shift(IRanges(4,3), i), IRanges(4,3)))

RangedData-class Data on ranges

72 RangedData-class

Description

RangedData supports storing data, i.e. a set of variables, on a set of ranges spanning multiple spaces
(e.g. chromosomes). Although the data is split across spaces, it can still be treated as one cohesive
dataset when desired and extends DataTable. In order to handle large datasets, the data values
are stored externally to avoid copying, and the rdapply function facilitates the processing of each
space separately (divide and conquer).

Details

A RangedData object consists of two primary components: a RangesList holding the ranges
over multiple spaces and a parallel SplitDataFrameList, holding the split data. There is also
an universe slot for denoting the source (e.g. the genome) of the ranges and/or data.

There are two different modes of interacting with a RangedData. The first mode treats the object as
a contiguous "data frame" annotated with range information. The accessors start, end, and width
get the corresponding fields in the ranges as atomic integer vectors, undoing the division over the
spaces. The [[and matrix-style [, extraction and subsetting functions unroll the data in the same
way. [[<- does the inverse. The number of rows is defined as the total number of ranges and the
number of columns is the number of variables in the data. It is often convenient and natural to treat
the data this way, at least when the data is small and there is no need to distinguish the ranges by
their space.

The other mode is to treat the RangedData as a list, with an element (a virtual Ranges/DataFrame
pair) for each space. The length of the object is defined as the number of spaces and the value
returned by the names accessor gives the names of the spaces. The list-style [subset function
behaves analogously. The rdapply function provides a convenient and formal means of applying
an operation over the spaces separately. This mode is helpful when ranges from different spaces
must be treated separately or when the data is too large to process over all spaces at once.

Accessor methods

In the code snippets below, x is a RangedData object.

The following accessors treat the data as a contiguous dataset, ignoring the division into spaces:

Array accessors:

nrow(x): The number of ranges in x.
ncol(x): The number of data variables in x.
dim(x): An integer vector of length two, essentially c(nrow(x), ncol(x)).
rownames(x), rownames(x) <- value: Gets or sets the names of the ranges in x.
colnames(x), colnames(x) <- value: Gets the names of the variables in x.
dimnames(x): A list with two elements, essentially list(rownames(x), colnames(x)).
dimnames(x) <- value: Sets the row and column names, where value is a list as described

above.
columnMetadata(x): Get the DataFrame of metadata along the value columns, i.e., where

each column in x is represented by a row in the metadata. Note that calling mcols(x)
returns the metadata on each space in x.

columnMetadata(x) <- value: Set the DataFrame of metadata for the columns.

RangedData-class 73

within(data, expr, ...): Evaluates expr within data, a RangedData. Any values as-
signed in expr will be stored as value columns in data, unless they match one of the
reserved names: ranges, start, end, width and space. Behavior is undefined if any of
the range symbols are modified inconsistently. Modifications to space are ignored.

Range accessors. The type of the return value depends on the type of Ranges. For IRanges, an
integer vector. Regardless, the number of elements is always equal to nrow(x).

start(x), start(x) <- value: Get or set the starts of the ranges. When setting the starts,
value can be an integer vector of length(sum(elementLengths(ranges(x)))) or an
IntegerList object of length length(ranges(x)) and names names(ranges(x)).

end(x), end(x) <- value: Get or set the ends of the ranges. When setting the ends,
value can be an integer vector of length(sum(elementLengths(ranges(x)))) or an
IntegerList object of length length(ranges(x)) and names names(ranges(x)).

width(x), width(x) <- value: Get or set the widths of the ranges. When setting the
widths, value can be an integer vector of length(sum(elementLengths(ranges(x))))
or an IntegerList object of length length(ranges(x)) and names names(ranges(x)).

These accessors make the object seem like a list along the spaces:

length(x): The number of spaces (e.g. chromosomes) in x.

names(x), names(x) <- value: Get or set the names of the spaces (e.g. "chr1"). NULL or a
character vector of the same length as x.

Other accessors:

universe(x), universe(x) <- value: Get or set the scalar string identifying the scope of the
data in some way (e.g. genome, experimental platform, etc). The universe may be NULL.

ranges(x), ranges(x) <- value: Gets or sets the ranges in x as a RangesList.

space(x): Gets the spaces from ranges(x).

values(x), values(x) <- value: Gets or sets the data values in x as a SplitDataFrameList.

score(x), score(x) <- value: Gets or sets the column representing a "score" in x, as a vector.
This is the column named score, or, if this does not exist, the first column, if it is numeric.
The get method return NULL if no suitable score column is found. The set method takes a
numeric vector as its value.

Constructor

RangedData(ranges = IRanges(), ..., space = NULL, universe = NULL):
Creates a RangedData with the ranges in ranges and variables given by the arguments in
See the constructor DataFrame for how the ... arguments are interpreted.
If ranges is a Ranges object, the space argument is used to split of the data into spaces.
If space is NULL, all of the ranges and values are placed into the same space, resulting in a
single-space (length one) RangedData object. Otherwise, the ranges and values are split into
spaces according to space, which is treated as a factor, like the f argument in split.
If ranges is a RangesList object, then the supplied space argument is ignored and its value
is derived from ranges.
If ranges is not a Ranges or RangesList object, this function calls as(ranges, "RangedData")
and returns the result if successful.
The universe may be specified as a scalar string by the universe argument.

74 RangedData-class

Coercion

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Copy the start, end, width of
the ranges and all of the variables as columns in a data.frame. This is a bridge to existing
functionality in R, but of course care must be taken if the data is large. Note that optional
and ... are ignored.

as(from, "DataFrame"): Like as.data.frame above, except the result is an DataFrame and it
probably involves less copying, especially if there is only a single space.

as(from, "RangedData"): Coerce from to a RangedData, according to the type of from:

Rle, RleList Converts each run to a range and stores the run values in a column named
"score".

RleViewsList Creates a RangedData using the ranges given by the runs of subject(from)
in each of the windows, with a value column score taken as the corresponding subject
values.

Ranges Creates a RangedData with only the ranges in from; no data columns.
RangesList Creates a RangedData with the ranges in from. Also propagates the inner meta-

data columns of the RangesList (accessed with mcols(unlist(from))) to the data
columns (aka values) of the RangedData. This makes it a lossless coercion and the exact
reverse of the coercion from RangedData to RangesList.

data.frame or DataTable Constructs a RangedData, using the columns “start”, “end”, and,
optionally, “space” columns in from. The other columns become data columns in the
result. Any “width” column is ignored.

as(from, "RangesList"): Creates a CompressedIRangesList (a subclass of RangesList)
made of the ranges in from. Also propagates the data columns (aka values) of the RangedData
to the inner metadata columns of the RangesList. This makes it a lossless coercion and the
exact reverse of the coercion from RangesList to RangedData.

as.env(x, enclos = parent.frame()): Creates an environment with a symbol for each
variable in the frame, as well as a ranges symbol for the ranges. This is efficient, as no
copying is performed.

Subsetting and Replacement

In the code snippets below, x is a RangedData object.

x[i]: Subsets x by indexing into its spaces, so the result is of the same class, with a different set
of spaces. i can be numerical, logical, NULL or missing.

x[i,j]: Subsets x by indexing into its rows and columns. The result is of the same class, with a
different set of rows and columns. The row index i can either treat x as a flat table by being
a character, integer, or logical vector or treat x as a partitioned table by being a RangesList,
LogicalList, or IntegerList of the same length as x.

x[[i]]: Extracts a variable from x, where i can be a character, numeric, or logical scalar that
indexes into the columns. The variable is unlisted over the spaces.
For convenience, values of "space" and "ranges" are equivalent to space(x) and unlist(ranges(x))
respectively.

x$name: similar to above, where name is taken literally as a column name in the data.

RangedData-class 75

x[[i]] <- value: Sets value as column i in x, where i can be a character, numeric, or logical
scalar that indexes into the columns. The length of value should equal nrow(x). x[[i]]
should be identical to value after this operation.
For convenience, i="ranges" is equivalent to ranges(x) <- value.

x$name <- value: similar to above, where name is taken literally as a column name in the data.

Splitting and Combining

In the code snippets below, x is a RangedData object.

split(x, f, drop = FALSE): Split x according to f, which should be of length equal to nrow(x).
Note that drop is ignored here. The result is a RangedDataList where every element has the
same length (number of spaces) but different sets of ranges within each space.

rbind(...): Matches the spaces from the RangedData objects in ... by name and combines
them row-wise. In a way, this is the reverse of the split operation described above.

c(x, ..., recursive = FALSE): Combines x with arguments specified in ..., which must
all be RangedData objects. This combination acts as if x is a list of spaces, meaning that the
result will contain the spaces of the first concatenated with the spaces of the second, and so
on. This function is useful when creating RangedData objects on a space-by-space basis and
then needing to combine them.

Applying

There are two ways explicitly supported ways to apply a function over the spaces of a RangedData.
The richest interface is rdapply, which is described in its own man page. The simpler interface is
an lapply method:

lapply(X, FUN, ...): Applies FUN to each space in X with extra parameters in

Author(s)

Michael Lawrence

See Also

DataTable, the parent of this class, with more utilities. The rdapply function for applying a function
to each space separately.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
filter <- c(1L, 0L, 1L)
score <- c(10L, 2L, NA)

constructing RangedData instances

no variables
rd <- RangedData()
rd <- RangedData(ranges)
ranges(rd)

76 RangedData-class

one variable
rd <- RangedData(ranges, score)
rd[["score"]]
multiple variables
rd <- RangedData(ranges, filter, vals = score)
rd[["vals"]] # same as rd[["score"]] above
rd$vals
rd[["filter"]]
rd <- RangedData(ranges, score + score)
rd[["score...score"]] # names made valid
use a universe
rd <- RangedData(ranges, universe = "hg18")
universe(rd)

split some data over chromosomes

range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
both <- c(ranges, range2)
score <- c(score, c(0L, 3L, NA, 22L))
filter <- c(filter, c(0L, 1L, NA, 0L))
chrom <- paste("chr", rep(c(1,2), c(length(ranges), length(range2))), sep="")

rd <- RangedData(both, score, filter, space = chrom, universe = "hg18")
rd[["score"]] # identical to score
rd[1][["score"]] # identical to score[1:3]

subsetting

list style: [i]

rd[numeric()] # these three are all empty
rd[logical()]
rd[NULL]
rd[] # missing, full instance returned
rd[FALSE] # logical, supports recycling
rd[c(FALSE, FALSE)] # same as above
rd[TRUE] # like rd[]
rd[c(TRUE, FALSE)]
rd[1] # numeric index
rd[c(1,2)]
rd[-2]

matrix style: [i,j]

rd[,NULL] # no columns
rd[NULL,] # no rows
rd[,1]
rd[,1:2]
rd[,"filter"]
rd[1,] # now by the rows
rd[c(1,3),]
rd[1:2, 1] # row and column
rd[c(1:2,1,3),1] ## repeating rows

RangedDataList-class 77

dimnames

colnames(rd)[2] <- "foo"
colnames(rd)
rownames(rd) <- head(letters, nrow(rd))
rownames(rd)

space names

names(rd)
names(rd)[1] <- "chr1"

variable replacement

count <- c(1L, 0L, 2L)
rd <- RangedData(ranges, count, space = c(1, 2, 1))
adding a variable
score <- c(10L, 2L, NA)
rd[["score"]] <- score
rd[["score"]] # same as 'score'
replacing a variable
count2 <- c(1L, 1L, 0L)
rd[["count"]] <- count2
numeric index also supported
rd[[2]] <- score
rd[[2]] # gets 'score'
removing a variable
rd[[2]] <- NULL
ncol(rd) # is only 1
rd$score2 <- score

combining/splitting

rd <- RangedData(ranges, score, space = c(1, 2, 1))
c(rd[1], rd[2]) # equal to 'rd'
rd2 <- RangedData(ranges, score)
unlist(split(rd2, c(1, 2, 1))) # same as 'rd'

applying

lapply(rd, `[[`, 1) # get first column in each space

RangedDataList-class Lists of RangedData

Description

A formal list of RangedData objects. Extends and inherits all its methods from List. One use case
is to group together all of the samples from an experiment generating data on ranges.

78 RangedSelection-class

Constructor

RangedDataList(...): Concatenates the RangedData objects in ... into a new RangedDataList.

Other methods

stack(x, index.var = "name"): Concantenates the elements of x into a RangedData, with a
column named by index.var that groups the records by their original element in x.

Author(s)

Michael Lawrence

See Also

RangedData, the element type of this List.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
a <- RangedData(IRanges(c(1,2,3),c(4,5,6)), score = c(10L, 2L, NA))
b <- RangedData(IRanges(c(1,2,4),c(4,7,5)), score = c(3L, 5L, 7L))
RangedDataList(sample1 = a, sample2 = b)

RangedSelection-class Selection of ranges and columns

Description

A RangedSelection represents a query against a table of interval data in terms of ranges and
column names. The ranges select any table row with an overlapping interval. Note that the intervals
are always returned, even if no columns are selected.

Details

Traditionally, tabular data structures have supported the subset function, which allows one to select
a subset of the rows and columns from the table. In that case, the rows and columns are specified by
two separate arguments. As querying interval data sources, especially those external to R, such as
binary indexed files and databases, is increasingly common, there is a need to encapsulate the row
and column specifications into a single data structure, mostly for the sake of interface cleanliness.
The RangedSelection class fills that role.

Constructor

RangedSelection(ranges = RangesList(), colnames = character()): Constructors
a RangedSelection with the given ranges and colnames.

Ranges-class 79

Coercion

as(from, "RangedSelection"): Coerces from to a RangedSelection object. Typically, from
is a RangesList, the ranges of which become the ranges in the new RangedSelection.

Accessors

In the code snippets below, x is always a RangedSelection.

ranges(x), ranges(x) <- value: Gets or sets the ranges, a RangesList, that select rows with
overlapping intervals.

colnames(x), colnames(x) <- value: Gets the names, a character vector, indicating the
columns.

Author(s)

Michael Lawrence

Examples

rl <- RangesList(chr1 = IRanges(c(1, 5), c(3, 6)))

RangedSelection(rl)
as(rl, "RangedSelection") # same as above

RangedSelection(rl, "score")

Ranges-class Ranges objects

Description

The Ranges virtual class is a general container for storing a set of integer ranges.

Details

A Ranges object is a vector-like object where each element describes a "range of integer values".

A "range of integer values" is a finite set of consecutive integer values. Each range can be fully
described with exactly 2 integer values which can be arbitrarily picked up among the 3 following
values: its "start" i.e. its smallest (or first, or leftmost) value; its "end" i.e. its greatest (or last, or
rightmost) value; and its "width" i.e. the number of integer values in the range. For example the set
of integer values that are greater than or equal to -20 and less than or equal to 400 is the range that
starts at -20 and has a width of 421. In other words, a range is a closed, one-dimensional interval
with integer end points and on the domain of integers.

The starting point (or "start") of a range can be any integer (see start below) but its "width" must
be a non-negative integer (see width below). The ending point (or "end") of a range is equal to its
"start" plus its "width" minus one (see end below). An "empty" range is a range that contains no
value i.e. a range that has a null width. Depending on the context, it can be interpreted either as just

80 Ranges-class

the empty set of integers or, more precisely, as the position between its "end" and its "start" (note
that for an empty range, the "end" equals the "start" minus one).

The length of a Ranges object is the number of ranges in it, not the number of integer values in its
ranges.

A Ranges object is considered empty iff all its ranges are empty.

Ranges objects have a vector-like semantic i.e. they only support single subscript subsetting (unlike,
for example, standard R data frames which can be subsetted by row and by column).

The Ranges class itself is a virtual class. The following classes derive directly from the Ranges
class: IRanges, NCList, PartitioningByEnd.

Methods

In the code snippets below, x, y and object are Ranges objects. Not all the functions described
below will necessarily work with all kinds of Ranges objects but they should work at least for
IRanges objects.

Note that many more operations on Ranges objects are described in other man pages of the IRanges
package. See for example the man page for intra range transformations (e.g. shift(), see ?`intra-range-methods`),
or the man page for inter range transformations (e.g. reduce(), see ?`inter-range-methods`),
or the man page for findOverlaps methods (see ?`findOverlaps-methods`), or the man page
for RangesList objects where the split method for Ranges objects is documented.

length(x): The number of ranges in x.

start(x): The start values of the ranges. This is an integer vector of the same length as x.

width(x): The number of integer values in each range. This is a vector of non-negative integers
of the same length as x.

end(x): start(x) + width(x) - 1L

mid(x): returns the midpoint of the range, start(x) + floor((width(x) - 1)/2).

names(x): NULL or a character vector of the same length as x.

update(object, ...): Convenience method for combining multiple modifications of object in
one single call. For example object <- update(object, start=start(object)-2L, end=end(object)+2L)
is equivalent to start(object) <- start(object)-2L; end(object) <- end(object)+2L.

tile(x, n, width, ...): Splits each range in x into subranges as specified by n (number of
ranges) or width. Only one of n or width can be specified. The return value is a IRangesList
the same length as x. Ranges with a width less than the width argument are returned un-
changed.

isEmpty(x): Return a logical value indicating whether x is empty or not.

as.matrix(x, ...): Convert x into a 2-column integer matrix containing start(x) and width(x).
Extra arguments (...) are ignored.

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Convert x into a standard R
data frame object. row.names must be NULL or a character vector giving the row names for the
data frame, and optional and any additional argument (...) is ignored. See ?as.data.frame
for more information about these arguments.

as.integer(x): Convert x into an integer vector, by converting each range into the integer se-
quence formed by from:to and concatenating them together.

Ranges-class 81

unlist(x, recursive = TRUE, use.names = TRUE): Similar to as.integer(x) except can
add names to elements.

x[[i]]: Return integer vector start(x[i]):end(x[i]) denoted by i. Subscript i can be a single
integer or a character string.

x[i]: Return a new Ranges object (of the same type as x) made of the selected ranges. i can be
a numeric vector, a logical vector, NULL or missing. If x is a NormalIRanges object and i a
positive numeric subscript (i.e. a numeric vector of positive values), then i must be strictly
increasing.

rep(x, times, length.out, each): Repeats the values in x through one of the following
conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the Ranges elements if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

c(x, ...): Combine x and the Ranges objects in ... together. Any object in ... must belong
to the same class as x, or to one of its subclasses, or must be NULL. The result is an object of
the same class as x. NOTE: Only works for IRanges (and derived) objects for now.

x * y: The arithmetic operation x * y is for centered zooming. It symmetrically scales the width
of x by 1/y, where y is a numeric vector that is recycled as necessary. For example, x * 2
results in ranges with half their previous width but with approximately the same midpoint.
The ranges have been “zoomed in”. If y is negative, it is equivalent to x * (1/abs(y)).
Thus, x * -2 would double the widths in x. In other words, x has been “zoomed out”.

x + y: Expands the ranges in x on either side by the corresponding value in the numeric vector y.

show(x): By default the show method displays 5 head and 5 tail lines. The number of lines can be
altered by setting the global options showHeadLines and showTailLines. If the object length
is less than the sum of the options, the full object is displayed. These options affect GRanges,
GAlignments, Ranges and XString objects.

Normality

A Ranges object x is implicitly representing an arbitrary finite set of integers (that are not necessarily
consecutive). This set is the set obtained by taking the union of all the values in all the ranges in x.
This representation is clearly not unique: many different Ranges objects can be used to represent
the same set of integers. However one and only one of them is guaranteed to be "normal".

By definition a Ranges object is said to be "normal" when its ranges are: (a) not empty (i.e. they
have a non-null width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e.
there must be a non empty gap between 2 consecutive ranges).

Here is a simple algorithm to determine whether x is "normal": (1) if length(x) == 0, then x is
normal; (2) if length(x) == 1, then x is normal iff width(x) >= 1; (3) if length(x) >= 2, then
x is normal iff:

start(x)[i] <= end(x)[i] < start(x)[i+1] <= end(x)[i+1]

for every 1 <= i < length(x).

82 Ranges-class

The obvious advantage of using a "normal" Ranges object to represent a given finite set of integers is
that it is the smallest in terms of number of ranges and therefore in terms of storage space. Also the
fact that we impose its ranges to be ordered from left to right makes it unique for this representation.

A special container (NormalIRanges) is provided for holding a "normal" IRanges object: a Nor-
malIRanges object is just an IRanges object that is guaranteed to be "normal".

Here are some methods related to the notion of "normal" Ranges:

isNormal(x): Return TRUE or FALSE indicating whether x is "normal" or not.

whichFirstNotNormal(x): Return NA if x is normal, or the smallest valid indice i in x for which
x[1:i] is not "normal".

Disjoint ranges

A Ranges object x is considered to be "disjoint" if its ranges are disjoint (i.e. non-overlapping).

The isDisjoint function is provided for testing whether a Ranges object is "disjoint" or not:

isDisjoint(x): Return TRUE or FALSE indicating whether x is "disjoint" or not.
isDisjoint handles empty ranges (a.k.a. zero-width ranges) as follow: single empty range A
is considered to overlap with single range B iff it’s contained in B without being on the edge
of B (in which case it would be ambiguous whether A is contained in or adjacent to B). In
other words, single empty range A is considered to overlap with single range B iff

start(B) < start(A) and end(A) < end(B)

Because A is an empty range it verifies end(A) = start(A) - 1 so the above is equivalent
to:

start(B) < start(A) <= end(B)

and also equivalent to:

start(B) <= end(A) < end(B)

Finally, it is also equivalent to:

compare(A, B) == 2

See ?`Ranges-comparison` for the meaning of the codes returned by the compare function.

Note that a "normal" Ranges object is always "disjoint" but the opposite is not true.

Author(s)

H. Pages and M. Lawrence

See Also

IRanges-class, Ranges-comparison, intra-range-methods, inter-range-methods, IRanges-utils, setops-
methods, RangedData-class, NCList-class, PartitioningByEnd-class, update, as.matrix, as.data.frame,
rep

Ranges-class 83

Examples

Basic manipulation

x <- IRanges(start=c(2:-1, 13:15), width=c(0:3, 2:0))
x
length(x)
start(x)
width(x)
end(x)
isEmpty(x)
as.matrix(x)
as.data.frame(x)

Subsetting:
x[4:2] # 3 ranges
x[-1] # 6 ranges
x[FALSE] # 0 range
x0 <- x[width(x) == 0] # 2 ranges
isEmpty(x0)

Use the replacement methods to resize the ranges:
width(x) <- width(x) * 2 + 1
x
end(x) <- start(x) # equivalent to width(x) <- 0
x
width(x) <- c(2, 0, 4)
x
start(x)[3] <- end(x)[3] - 2 # resize the 3rd range
x

Name the elements:
names(x)
names(x) <- c("range1", "range2")
x
x[is.na(names(x))] # 5 ranges
x[!is.na(names(x))] # 2 ranges

ir <- IRanges(c(1,5), c(3,10))
ir*1 # no change
ir*c(1,2) # zoom second range by 2X
ir*-2 # zoom out 2X

isDisjoint()

On a Ranges object:
isDisjoint(IRanges(c(2,5,1), c(3,7,3))) # FALSE
isDisjoint(IRanges(c(2,9,5), c(3,9,6))) # TRUE
isDisjoint(IRanges(1, 5)) # TRUE

84 Ranges-comparison

Handling of empty ranges:
x <- IRanges(c(11, 16, 11, -2, 11), c(15, 29, 10, 10, 10))
stopifnot(isDisjoint(x))

Sliding an empty range along a non-empty range:
sapply(11:17,

function(i) compare(IRanges(i, width=0), IRanges(12, 15)))

sapply(11:17,
function(i) isDisjoint(c(IRanges(i, width=0), IRanges(12, 15))))

Ranges-comparison Comparing and ordering ranges

Description

Methods for comparing and/or ordering Ranges objects.

Usage

Element-wise (aka "parallel") comparison of 2 Ranges objects
--

S4 method for signature 'Ranges,Ranges'
compare(x, y)

rangeComparisonCodeToLetter(code)

match()

S4 method for signature 'Ranges,Ranges'
match(x, table, nomatch=NA_integer_, incomparables=NULL,

method=c("auto", "quick", "hash"))

selfmatch()

S4 method for signature 'Ranges'
selfmatch(x,

method=c("auto", "quick", "hash"))

order()

S4 method for signature 'Ranges'
order(..., na.last=TRUE, decreasing=FALSE)

Ranges-comparison 85

Arguments

x, y, table Ranges objects.

code A vector of codes as returned by compare.

nomatch The value to be returned in the case when no match is found. It is coerced to an
integer.

incomparables Not supported.

method Use a Quicksort-based (method="quick") or a hash-based (method="hash")
algorithm. The latter tends to give better performance, except maybe for some
pathological input that we’ve not been able to determine so far.
When method="auto" is specified, the most efficient algorithm will be used,
that is, the hash-based algorithm if length(x) <= 2^29, otherwise the Quicksort-
based algorithm.

... One or more Ranges objects. The additional Ranges objects are used to break
ties.

na.last Ignored.

decreasing TRUE or FALSE.

Details

Two ranges are considered equal iff they share the same start and width. Note that with this defi-
nition, 2 empty ranges are generally not equal (they need to share the same start to be considered
equal). This means that, when it comes to comparing ranges, an empty range is interpreted as a
position between its end and start. For example, a typical usecase is comparison of insertion points
defined along a string (like a DNA sequence) and represented as empty ranges.

Ranges are ordered by starting position first, and then by width. This way, the space of ranges is
totally ordered. On a Ranges object, order, sort, and rank are consistent with this order.

compare(x, y): Performs element-wise (aka "parallel") comparison of 2 Ranges objects of x and
y, that is, returns an integer vector where the i-th element is a code describing how x[i] is
qualitatively positioned with respect to y[i].
Here is a summary of the 13 predefined codes (and their letter equivalents) and their meanings:

-6 a: x[i]: .oooo....... 6 m: x[i]:oooo.
y[i]:oooo. y[i]: .oooo.......

-5 b: x[i]: ..oooo...... 5 l: x[i]:oooo..
y[i]:oooo.. y[i]: ..oooo......

-4 c: x[i]: ...oooo..... 4 k: x[i]:oooo...
y[i]:oooo... y[i]: ...oooo.....

-3 d: x[i]: ...oooooo... 3 j: x[i]:oooo...
y[i]:oooo... y[i]: ...oooooo...

-2 e: x[i]: ..oooooooo.. 2 i: x[i]:oooo....
y[i]:oooo.... y[i]: ..oooooooo..

86 Ranges-comparison

-1 f: x[i]: ...oooo..... 1 h: x[i]: ...oooooo...
y[i]: ...oooooo... y[i]: ...oooo.....

0 g: x[i]: ...oooooo...
y[i]: ...oooooo...

Note that this way of comparing ranges is a refinement over the standard ranges comparison
defined by the ==, !=, <=, >=, < and > operators. In particular a code that is < 0, = 0, or > 0,
corresponds to x[i] < y[i], x[i] == y[i], or x[i] > y[i], respectively.
The compare method for Ranges objects is guaranteed to return predefined codes only but
methods for other objects (e.g. for GenomicRanges objects) can return non-predefined codes.
Like for the predefined codes, the sign of any non-predefined code must tell whether x[i] is
less than, or greater than y[i].

rangeComparisonCodeToLetter(x): Translate the codes returned by compare. The 13 prede-
fined codes are translated as follow: -6 -> a; -5 -> b; -4 -> c; -3 -> d; -2 -> e; -1 -> f; 0 -> g;
1 -> h; 2 -> i; 3 -> j; 4 -> k; 5-> l; 6 -> m. Any non-predefined code is translated to X. The
translated codes are returned in a factor with 14 levels: a, b, ..., l, m, X.

match(x, table, nomatch=NA_integer_, method=c("auto", "quick", "hash")): Returns
an integer vector of the length of x, containing the index of the first matching range in table
(or nomatch if there is no matching range) for each range in x.

selfmatch(x, method=c("auto", "quick", "hash")): Equivalent to, but more efficient than,
match(x, x, method=method).

duplicated(x, fromLast=FALSE, method=c("auto", "quick", "hash")): Determines
which elements of x are equal to elements with smaller subscripts, and returns a logical vector
indicating which elements are duplicates. duplicated(x) is equivalent to, but more efficient
than, duplicated(as.data.frame(x)) on a Ranges object. See duplicated in the base
package for more details.

unique(x, fromLast=FALSE, method=c("auto", "quick", "hash")): Removes duplicate
ranges from x. unique(x) is equivalent to, but more efficient than, unique(as.data.frame(x))
on a Ranges object. See unique in the base package for more details.

x %in% table: A shortcut for finding the ranges in x that match any of the ranges in table.
Returns a logical vector of length equal to the number of ranges in x.

findMatches(x, table, method=c("auto", "quick", "hash")): An enhanced version of
match that returns all the matches in a Hits object.

countMatches(x, table, method=c("auto", "quick", "hash")): Returns an integer vector
of the length of x containing the number of matches in table for each element in x.

order(...): Returns a permutation which rearranges its first argument (a Ranges object) into
ascending order, breaking ties by further arguments (also Ranges objects).

sort(x): Sorts x. See sort in the base package for more details.
rank(x, na.last=TRUE, ties.method=c("average", "first", "random", "max", "min")):

Returns the sample ranks of the ranges in x. See rank in the base package for more details.

Author(s)

H. Pages

Ranges-comparison 87

See Also

• The Ranges class.

• Vector-comparison in the S4Vectors package for general information about comparing, order-
ing, and tabulating vector-like objects.

• GenomicRanges-comparison in the GenomicRanges package for comparing and ordering ge-
nomic ranges.

• intra-range-methods and inter-range-methods for intra and inter range transformations.

• setops-methods for set operations on IRanges objects.

• findOverlaps for finding overlapping ranges.

Examples

A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 Ranges OBJECTS

x0 <- IRanges(1:11, width=4)
x0
y0 <- IRanges(6, 9)
compare(x0, y0)
compare(IRanges(4:6, width=6), y0)
compare(IRanges(6:8, width=2), y0)
compare(x0, y0) < 0 # equivalent to 'x0 < y0'
compare(x0, y0) == 0 # equivalent to 'x0 == y0'
compare(x0, y0) > 0 # equivalent to 'x0 > y0'

rangeComparisonCodeToLetter(-10:10)
rangeComparisonCodeToLetter(compare(x0, y0))

Handling of zero-width ranges (a.k.a. empty ranges):
x1 <- IRanges(11:17, width=0)
x1
compare(x1, x1[4])
compare(x1, IRanges(12, 15))

Note that x1[2] and x1[6] are empty ranges on the edge of non-empty
range IRanges(12, 15). Even though -1 and 3 could also be considered
valid codes for describing these configurations, compare()
considers x1[2] and x1[6] to be *adjacent* to IRanges(12, 15), and
thus returns codes -5 and 5:
compare(x1[2], IRanges(12, 15)) # -5
compare(x1[6], IRanges(12, 15)) # 5

x2 <- IRanges(start=c(20L, 8L, 20L, 22L, 25L, 20L, 22L, 22L),
width=c(4L, 0L, 11L, 5L, 0L, 9L, 5L, 0L))

x2

which(width(x2) == 0) # 3 empty ranges
x2[2] == x2[2] # TRUE
x2[2] == x2[5] # FALSE
x2 == x2[4]

88 RangesList-class

x2 >= x2[3]

B. match(), selfmatch(), %in%, duplicated(), unique()

table <- x2[c(2:4, 7:8)]
match(x2, table)

x2 %in% table

duplicated(x2)
unique(x2)

C. findMatches(), countMatches()

findMatches(x2, table)
countMatches(x2, table)

x2_levels <- unique(x2)
countMatches(x2_levels, x2)

D. order() AND RELATED METHODS

order(x2)
sort(x2)
rank(x2, ties.method="first")

RangesList-class List of Ranges

Description

An extension of List that holds only Ranges objects. Useful for storing ranges over a set of spaces
(e.g. chromosomes), each of which requires a separate Ranges object. As a Vector, RangesList
may be annotated with its universe identifier (e.g. a genome) in which all of its spaces exist.

Accessors

In the code snippets below, x is a RangesList object.

All of these accessors collapse over the spaces:

start(x), start(x) <- value: Get or set the starts of the ranges. When setting the starts, value
can be an integer vector of length(sum(elementLengths(x))) or an IntegerList object of
length length(x) and names names(x).

end(x), end(x) <- value: Get or set the ends of the ranges. When setting the starts, value can
be an integer vector of length(sum(elementLengths(x))) or an IntegerList object of length
length(x) and names names(x).

RangesList-class 89

width(x), width(x) <- value: Get or set the widths of the ranges. When setting the starts,
value can be an integer vector of length(sum(elementLengths(x))) or an IntegerList ob-
ject of length length(x) and names names(x).

space(x): Gets the spaces of the ranges as a character vector. This is equivalent to names(x),
except each name is repeated according to the length of its element.

These accessors are for the universe identifier:

universe(x): gets the name of the universe as a single string, if one has been specified, NULL
otherwise.

universe(x) <- value: sets the name of the universe to value, a single string or NULL.

Constructor

RangesList(..., universe = NULL): Each Ranges in ... becomes an element in the new
RangesList, in the same order. This is analogous to the list constructor, except every ar-
gument in ... must be derived from Ranges. The universe is specified by the universe
parameter, which should be a single string or NULL, to leave unspecified.

Coercion

In the code snippets below, x and from are a RangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE, ..., value.name = "value", use.outer.mcols = FALSE, group_name.as.factor = FALSE):
Coerces x to a data.frame. See as.data.frame on the List man page for details (?List).

as(from, "SimpleIRangesList"): Coerces from, to a SimpleIRangesList, requiring that all
Ranges elements are coerced to internal IRanges elements. This is a convenient way to ensure
that all Ranges have been imported into R (and that there is no unwanted overhead when
accessing them).

as(from, "CompressedIRangesList"): Coerces from, to a CompressedIRangesList, requir-
ing that all Ranges elements are coerced to internal IRanges elements. This is a convenient
way to ensure that all Ranges have been imported into R (and that there is no unwanted over-
head when accessing them).

as(from, "SimpleNormalIRangesList"): Coerces from, to a SimpleNormalIRangesList, re-
quiring that all Ranges elements are coerced to internal NormalIRanges elements.

as(from, "CompressedNormalIRangesList"): Coerces from, to a CompressedNormalIRangesList,
requiring that all Ranges elements are coerced to internal NormalIRanges elements.

Arithmetic Operations

Any arithmetic operation, such as x + y, x * y, etc, where x is a RangesList, is performed
identically on each element. Currently, Ranges supports only the * operator, which zooms the
ranges by a numeric factor.

Author(s)

Michael Lawrence

90 rdapply

See Also

List, the parent of this class, for more functionality.

Examples

Basic manipulation

range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
named <- RangesList(one = range1, two = range2)
length(named) # 2
start(named) # same as start(c(range1, range2))
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- RangesList(range1, range2)
names(unnamed) # NULL

edit the width of the ranges in the list
edited <- named
width(edited) <- rep(c(3,2), elementLengths(named))
edited

same as list(range1, range2)
as.list(RangesList(range1, range2))

coerce to data.frame
as.data.frame(named)

set the universe
universe(named) <- "hg18"
universe(named)
RangesList(range1, range2, universe = "hg18")

zoom in 2X
collection <- RangesList(one = range1, range2)
collection * 2

isDisjoint()

range3 <- IRanges(start=c(-2, 6, 7), width=c(8, 0, 0)) # with empty ranges
collection <- IRangesList(one=range1, range2, range3)

isDisjoint(collection)

rdapply Applying over spaces

rdapply 91

Description

The rdapply function applies a user function over the spaces of a RangedData. The parameters to
rdapply are collected into an instance of RDApplyParams, which is passed as the sole parameter to
rdapply.

Usage

rdapply(x, ...)

Arguments

x The RDApplyParams instance, see below for how to make one.

... Additional arguments for methods

Details

The rdapply function is an attempt to facilitate the common operation of performing the same
operation over each space (e.g. chromosome) in a RangedData. To facilitate a wide array of such
tasks, the function takes a large number of options. The RDApplyParams class is meant to help man-
age this complexity. In particular, it facilitates experimentation through its support for incremental
changes to parameter settings.

There are two RangedData settings that are required: the user function object and the RangedData
over which it is applied. The rest of the settings determine what is actually passed to the user
function and how the return value is processed before relaying it to the user. The following is the
description and rationale for each setting.

rangedData REQUIRED. The RangedData instance over which applyFun is applied.

applyFun REQUIRED. The user function to be applied to each space in the RangedData. The
function must expect the RangedData as its first parameter and also accept the parameters
specified in applyParams.

applyParams The list of additional parameters to pass to applyFun. Usually empty.

filterRules The instance of FilterRules that is used to filter each subset of the RangedData
passed to the user function. This is an efficient and convenient means for performing the
same operation over different subsets of the data on a space-by-space basis. In particular, this
avoids the need to store subsets of the entire RangedData. A common workflow is to invoke
rdapply with one set of active filters, enable different filters, reinvoke rdapply, and compare
the results.

simplify A scalar logical (TRUE or FALSE) indicating whether the list to be returned from rdapply
should be simplified as by sapply. Defaults to FALSE.

reducerFun The function that is used to convert the list that would otherwise be returned from
rdapply to something more convenient. The function should take the list as its first parameter
and also accept the parameters specified in reducerParams. This is an alternative to the
primitive behavior of the simplify option (so simplify must be FALSE if this option is set).
The aim is to orthogonalize the applyFun operation (i.e. the statistics) from the data structure
of the result.

reducerParams A list of additional parameters to pass to reducerFun. Can only be set if
reducerFun is set. Usually empty.

92 rdapply

iteratorFun The function used for applying over the RangedData. By default, this is lapply, but
it could also be a specialized function, like mclapply.

Value

By default a list holding the result of each invocation of the user function, but see details.

Constructing an RDApplyParams object

RDApplyParams(rangedData, applyFun, applyParams, filterRules, simplify, reducerFun, reducerParams):
Constructs a RDApplyParams object with each setting specified by the argument of the same
name. See the Details section for more information.

Accessors

In the following code snippets, x is an RDApplyParams object.

rangedData(x), rangedData(x) <- value: Get or set the RangedData instance over which
applyFun is applied.

applyFun(x), applyFun(x) <- value: Get or set the user function to be applied to each space
in the RangedData.

applyParams(x), applyParams(x) <- value: Get or set the list of additional parameters to
pass to applyFun.

filterRules(x), filterRules(x) <- value: Get or set the instance of FilterRules that is
used to filter each subset of the RangedData passed to the user function.

simplify(x), simplify(x) <- value: Get or set a a scalar logical (TRUE or FALSE) indicating
whether the list to be returned from rdapply should be simplified as by sapply.

reducerFun(x), reducerFun(x) <- value: Get or set the function that is used to convert the
list that would otherwise be returned from rdapply to something more convenient.

reducerParams(x), reducerParams(x) <- value: Get or set a list of additional parameters
to pass to reducerFun.

iteratorFun(x), iteratorFun(x) <- value: Get or set the function used for applying over the
RangedData.

Author(s)

Michael Lawrence

See Also

RangedData, FilterRules

read.Mask 93

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(2L, 0L, 1L)
rd <- RangedData(ranges, score, space = c("chr1","chr2","chr1"))

a single function
countrows <- function(rd) nrow(rd)
params <- RDApplyParams(rd, countrows)
rdapply(params) # list(chr1 = 2L, chr2 = 1L)

with a parameter
params <- RDApplyParams(rd, function(rd, x) nrow(rd)*x, list(x = 2))
rdapply(params) # list(chr1 = 4L, chr2 = 2L)

add a filter
cutoff <- 0
rules <- FilterRules(filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 2L, chr2 = 0L)
rules <- FilterRules(list(fun = function(rd) rd[["score"]] < 2),

filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 1L, chr2 = 0L)
active(filterRules(params))["filter"] <- FALSE
rdapply(params) # list(chr1 = 1L, chr2 = 1L)

simplify
params <- RDApplyParams(rd, countrows, simplify = TRUE)
rdapply(params) # c(chr1 = 2L, chr2 = 1L)

reducing
params <- RDApplyParams(rd, countrows, reducerFun = unlist,

reducerParams = list(use.names = FALSE))
rdapply(params) ## c(2L, 1L)

read.Mask Read a mask from a file

Description

read.agpMask and read.gapMask extract the AGAPS mask from an NCBI "agp" file or a UCSC
"gap" file, respectively.

read.liftMask extracts the AGAPS mask from a UCSC "lift" file (i.e. a file containing offsets of
contigs within sequences).

read.rmMask extracts the RM mask from a RepeatMasker .out file.

read.trfMask extracts the TRF mask from a Tandem Repeats Finder .bed file.

94 read.Mask

Usage

read.agpMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.gapMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.liftMask(file, seqname="?", mask.width=NA)
read.rmMask(file, seqname="?", mask.width=NA, use.IDs=FALSE)
read.trfMask(file, seqname="?", mask.width=NA)

Arguments

file Either a character string naming a file or a connection open for reading.

seqname The name of the sequence for which the mask must be extracted. If no sequence
is specified (i.e. seqname="?") then an error is raised and the sequence names
found in the file are displayed. If the file doesn’t contain any information for
the specified sequence, then a warning is issued and an empty mask of width
mask.width is returned.

mask.width The width of the mask to return i.e. the length of the sequence this mask will be
put on. See ?`MaskCollection-class` for more information about the width
of a MaskCollection object.

gap.types NULL or a character vector containing gap types. Use this argument to filter
the assembly gaps that are to be extracted from the "agp" or "gap" file based
on their type. Most common gap types are "contig", "clone", "centromere",
"telomere", "heterochromatin", "short_arm" and "fragment". With gap.types=NULL,
all the assembly gaps described in the file are extracted. With gap.types="?",
an error is raised and the gap types found in the file for the specified sequence
are displayed.

use.gap.types Whether or not the gap types provided in the "agp" or "gap" file should be used
to name the ranges constituing the returned mask. See ?`IRanges-class` for
more information about the names of an IRanges object.

use.IDs Whether or not the repeat IDs provided in the RepeatMasker .out file should be
used to name the ranges constituing the returned mask. See ?`IRanges-class`
for more information about the names of an IRanges object.

See Also

MaskCollection-class, IRanges-class

Examples

A. Extract a mask of assembly gaps ("AGAPS" mask) with read.agpMask()

Note: The hs_b36v3_chrY.agp file was obtained by downloading,
extracting and renaming the hs_ref_chrY.agp.gz file from
##
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
hs_ref_chrY.agp.gz 5 KB 24/03/08 04:33:00 PM
##
on May 9, 2008.

read.Mask 95

chrY_length <- 57772954
file1 <- system.file("extdata", "hs_b36v3_chrY.agp", package="IRanges")
mask1 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,

use.gap.types=TRUE)
mask1
mask1[[1]]

mask11 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,
gap.types=c("centromere", "heterochromatin"))

mask11[[1]]

B. Extract a mask of assembly gaps ("AGAPS" mask) with read.liftMask()

Note: The hg18liftAll.lft file was obtained by downloading,
extracting and renaming the liftAll.zip file from
##
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/
liftAll.zip 03-Feb-2006 11:35 5.5K
##
on May 8, 2008.

file2 <- system.file("extdata", "hg18liftAll.lft", package="IRanges")
mask2 <- read.liftMask(file2, seqname="chr1")
mask2
if (interactive()) {

contigs 7 and 8 for chrY are adjacent
read.liftMask(file2, seqname="chrY")

displays the sequence names found in the file
read.liftMask(file2)

specify an unknown sequence name
read.liftMask(file2, seqname="chrZ", mask.width=300)

}

C. Extract a RepeatMasker ("RM") or Tandem Repeats Finder ("TRF")
mask with read.rmMask() or read.trfMask()

Note: The ce2chrM.fa.out and ce2chrM.bed files were obtained by
downloading, extracting and renaming the chromOut.zip and
chromTrf.zip files from
##
http://hgdownload.cse.ucsc.edu/goldenPath/ce2/bigZips/
chromOut.zip 21-Apr-2004 09:05 2.6M
chromTrf.zip 21-Apr-2004 09:07 182K
##
on May 7, 2008.

Before you can extract a mask with read.rmMask() or read.trfMask(), you
need to know the length of the sequence that you're going to put the

96 reverse

mask on:
if (interactive()) {

library(BSgenome.Celegans.UCSC.ce2)
chrM_length <- seqlengths(Celegans)[["chrM"]]

Read the RepeatMasker .out file for chrM in ce2:
file3 <- system.file("extdata", "ce2chrM.fa.out", package="IRanges")
RMmask <- read.rmMask(file3, seqname="chrM", mask.width=chrM_length)
RMmask

Read the Tandem Repeats Finder .bed file for chrM in ce2:
file4 <- system.file("extdata", "ce2chrM.bed", package="IRanges")
TRFmask <- read.trfMask(file4, seqname="chrM", mask.width=chrM_length)
TRFmask
desc(TRFmask) <- paste(desc(TRFmask), "[period<=12]")
TRFmask

Put the 2 masks on chrM:
chrM <- Celegans$chrM
masks(chrM) <- RMmask # this would drop all current masks, if any
masks(chrM) <- append(masks(chrM), TRFmask)
chrM

}

reverse reverse

Description

A generic function for reversing vector-like or list-like objects. This man page describes methods
for reversing a character vector, a Views object, or a MaskCollection object. Note that reverse is
similar to but not the same as rev.

Usage

reverse(x, ...)

Arguments

x A vector-like or list-like object.

... Additional arguments to be passed to or from methods.

Details

On a character vector or a Views object, reverse reverses each element individually, without mod-
ifying the top-level order of the elements. More precisely, each individual string of a character
vector is reversed.

Rle-class-leftovers 97

Value

An object of the same class and length as the original object.

See Also

reverse-methods, Views-class, MaskCollection-class, endoapply, rev

Examples

On a character vector:
reverse(c("Hi!", "How are you?"))
rev(c("Hi!", "How are you?"))

On a Views object:
v <- successiveViews(Rle(c(-0.5, 12.3, 4.88), 4:2), 1:4)
v
reverse(v)
rev(v)

On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
reverse(mymasks)

Rle-class-leftovers Rle objects (old man page)

Description

IMPORTANT NOTE - 7/3/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Rle objects located in the S4Vectors
package.

Coercion

In the code snippets below, from is an Rle object:

as(from, "IRanges"): Creates an IRanges instance from a logical Rle. Note that this instance is
guaranteed to be normal.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical Rle.

98 RleViews-class

General Methods

In the code snippets below, x is an Rle object:

window(x, start=NA, end=NA, width=NA): Extract the subsequence window from x specified
by:
start, end, width The start, end, or width of the window. Two of the three are required.

window(x, start=NA, end=NA, width=NA) <- value: Replace the subsequence window
specified on the left (i.e. the subsequence in x specified by start, end and width) by value.
value must either be of class Rle, belong to a subclass of Rle, or be coercible to Rle or a
subclass of Rle. The elements of value are repeated to create an Rle with the same number of
elements as the width of the subsequence window it is replacing.

split(x, f, drop=FALSE): Splits x according to f to create a CompressedRleList object. If f is a
list-like object then drop is ignored and f is treated as if it was rep(seq_len(length(f)), sapply(f, length)),
so the returned object has the same shape as f (it also receives the names of f). Otherwise, if
f is not a list-like object, empty list elements are removed from the returned object if drop is
TRUE.

findRange(x, vec): Returns an IRanges object representing the ranges in Rle vec that are
referenced by the indices in the integer vector x.

splitRanges(x): Returns a CompressedIRangesList object that contains the ranges for each of
the unique run values.

See Also

The Rle class defined and documented in the S4Vectors package.

Examples

x <- Rle(10:1, 1:10)
x

window(x, 4, 14)

RleViews-class The RleViews class

Description

The RleViews class is the basic container for storing a set of views (start/end locations) on the same
Rle object.

Details

An RleViews object contains a set of views (start/end locations) on the same Rle object called "the
subject vector" or simply "the subject". Each view is defined by its start and end locations: both are
integers such that start <= end. An RleViews object is in fact a particular case of a Views object (the
RleViews class contains the Views class) so it can be manipulated in a similar manner: see ?Views
for more information. Note that two views can overlap and that a view can be "out of limits" i.e. it
can start before the first element of the subject or/and end after its last element.

RleViewsList-class 99

Author(s)

P. Aboyoun

See Also

Views-class, Rle-class, view-summarization-methods

Examples

subject <- Rle(rep(c(3L, 2L, 18L, 0L), c(3,2,1,5)))
myViews <- Views(subject, 3:0, 5:8)
myViews
subject(myViews)
length(myViews)
start(myViews)
end(myViews)
width(myViews)
myViews[[2]]

set.seed(0)
vec <- Rle(sample(0:2, 20, replace = TRUE))
vec
Views(vec, vec > 0)

RleViewsList-class List of RleViews

Description

An extension of ViewsList that holds only RleViews objects. Useful for storing coverage vectors
over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews object.

Details

For more information on methods available for RleViewsList objects consult the man pages for
ViewsList-class and view-summarization-methods.

Constructor

RleViewsList(..., rleList, rangesList, universe = NULL): Either ... or the rleList/rangesList
couplet provide the RleViews for the list. If ... is provided, each of these arguments must
be RleViews objects. Alternatively, rleList and rangesList accept Rle and Ranges objects
respectively that are meshed together for form the RleViewsList. The universe is specified by
the universe parameter, which should be a single string or NULL, to leave unspecified.

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): Same as RleViewsList(rleList = subject, rangesList = start).

100 seqapply

Coercion

In the code snippets below, from is an RleViewsList object:

as(from, "IRangesList"): Creates a CompressedIRangesList object containing the view lo-
cations in from.

as(from, "CompressedIRangesList"): Creates a CompressedIRangesList object containing
the view locations in from.

as(from, "SimpleIRangesList"): Creates a SimpleIRangesList object containing the view
locations in from.

Author(s)

P. Aboyoun

See Also

ViewsList-class, view-summarization-methods

Examples

Rle objects
subject1 <- Rle(c(3L,2L,18L,0L), c(3,2,1,5))
set.seed(0)
subject2 <- Rle(c(0L,5L,2L,0L,3L), c(8,5,2,7,4))

Views
rleViews1 <- Views(subject1, 3:0, 5:8)
rleViews2 <- Views(subject2, subject2 > 0)

RleList and RangesList objects
rleList <- RleList(subject1, subject2)
rangesList <- IRangesList(IRanges(3:0, 5:8), IRanges(subject2 > 0))

methods for construction
method1 <- RleViewsList(rleViews1, rleViews2)
method2 <- RleViewsList(rleList = rleList, rangesList = rangesList)
identical(method1, method2)

calculation over the views
viewSums(method1)

seqapply Apply function and cast to Vector

Description

The seqapply family of functions behaves much like the existing lapply family, except the return
value is cast to a Vector subclass. This facilitates constraining computation to the Vector framework
across iteration and (for seqsplit) splitting.

seqapply 101

Usage

The 'seqapply' family:
seqapply(X, FUN, ...)
mseqapply(FUN, ..., MoreArgs = NULL, USE.NAMES = TRUE)
tseqapply(X, INDEX, FUN = NULL, ...)
seqsplit(x, f, drop = FALSE)
seqby(data, INDICES, FUN, ...)

Reverse seqsplit():
S4 method for signature 'List'
unsplit(value, f, drop = FALSE)
S4 replacement method for signature 'Vector'
split(x, f, drop = FALSE, ...) <- value

Arguments

X The object over which to iterate, usually a vector or Vector

x Like X

data Like X

FUN The function that is applied to each element of X

MoreArgs Additional arguments to FUN that are treated like scalars

USE.NAMES Whether the return values should inherit names from one of the arguments

INDEX A list of factors to split X into subsets, each of which is passed in a separate
invocation of FUN

INDICES Like INDEX, except a single factor need not be in a list.

f A factor or list of factors

drop Whether to drop empty elements from the returned list

... Extra arguments to pass to FUN

value The List object to unsplit.

Details

The functions in the seqapply family should be used just like their base equivalent:

seqapply => lapply

mseqapply => mapply

tseqapply => tapply

seqsplit => split

seqby => by

The only difference is that the result is cast to a Vector object. The casting logic simply looks for a
common class from which all returned values inherit. It then checks for the existence of a function
of the form ClassList where Class is the name of the class. If such a function is not found,
the search proceeds up the hierarchy of classes. An error is thrown when hierarchy is exhausted.

102 setops-methods

If ClassList is found, it is called with the list of return values as its only argument, under the
assumption that a Vector-derived instance will be constructed.

unsplit unlists value, where the order of the returned vector is as if value were originally created
by splitting that vector on the factor f.

split(x, f, drop = FALSE) <- value: Virtually splits x by the factor f, replaces the elements
of the resulting list with the elements from the list value, and restores x to its original form. Note
that this works for any Vector, even though split itself is not universally supported.

Value

A List object for the functions in the seqapply family.

Author(s)

Michael Lawrence

setops-methods Set operations on IRanges and RangesList objects

Description

Performs set operations on IRanges objects.

Usage

Vector-wise operations:
S4 method for signature 'Ranges,Ranges'
union(x, y,...)
S4 method for signature 'Ranges,Ranges'
intersect(x, y,...)
S4 method for signature 'Ranges,Ranges'
setdiff(x, y,...)

Element-wise (aka "parallel") operations:
S4 method for signature 'Ranges,Ranges'
punion(x, y, fill.gap=FALSE, ...)
S4 method for signature 'Ranges,Ranges'
pintersect(x, y, resolve.empty=c("none", "max.start", "start.x"), ...)
S4 method for signature 'Ranges,Ranges'
psetdiff(x, y, ...)
S4 method for signature 'Ranges,Ranges'
pgap(x, y, ...)

setops-methods 103

Arguments

x, y IRanges objects.

fill.gap Logical indicating whether or not to force a union by using the rule start = min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty One of "none", "max.start", or "start.x" denoting how to handle ambiguous
empty ranges formed by intersections. "none" - throw an error if an ambiguous
empty range is formed, "max.start" - associate the maximum start value with
any ambiguous empty range, and "start.x" - associate the start value of x with
any ambiguous empty range. (See Details section below for the definition of an
ambiguous range.)

... Further arguments to be passed to or from other methods.

Details

The union, intersect and setdiff methods for IRanges objects return a "normal" IRanges object
(of the same class as x) representing the union, intersection and (asymmetric!) difference of the sets
of integers represented by x and y.

punion, pintersect, psetdiff and pgap are generic functions that compute the element-wise
(aka "parallel") union, intersection, (asymmetric!) difference and gap between each element in x
and its corresponding element in y. Methods for IRanges objects are defined. For these methods, x
and y must have the same length (i.e. same number of ranges) and they return an IRanges instance
of the same length as x and y where each range represents the union/intersection/difference/gap
of/between the corresponding ranges in x and y.

By default, pintersect will throw an error when an "ambiguous empty range" is formed. An
ambiguous empty range can occur three different ways: 1) when corresponding non-empty ranges
elements x and y have an empty intersection, 2) if the position of an empty range element does
not fall within the corresponding limits of a non-empty range element, or 3) if two corresponding
empty range elements do not have the same position. For example if empty range element [22,21]
is intersected with non-empty range element [1,10], an error will be produced; but if it is intersected
with the range [22,28], it will produce [22,21]. As mentioned in the Arguments section above, this
behavior can be changed using the resolve.empty argument.

Author(s)

H. Pages and M. Lawrence

See Also

pintersect is similar to narrow, except the end points are absolute, not relative. pintersect
is also similar to restrict, except ranges outside of the restriction become empty and are not
discarded.

union,

Ranges-class,

intra-range-methods for intra range transformations,

inter-range-methods for inter range transformations,

IRanges-class, IRanges-utils

104 slice-methods

Examples

x <- IRanges(c(1, 5, -2, 0, 14), c(10, 9, 3, 11, 17))
subject <- Rle(1:-3, 6:2)
y <- Views(subject, start=c(14, 0, -5, 6, 18), end=c(20, 2, 2, 8, 20))

Vector-wise operations:
union(x, ranges(y))
union(ranges(y), x)

intersect(x, ranges(y))
intersect(ranges(y), x)

setdiff(x, ranges(y))
setdiff(ranges(y), x)

Element-wise (aka "parallel") operations:
try(punion(x, ranges(y)))
punion(x[3:5], ranges(y)[3:5])
punion(x, ranges(y), fill.gap=TRUE)
try(pintersect(x, ranges(y)))
pintersect(x[3:4], ranges(y)[3:4])
pintersect(x, ranges(y), resolve.empty="max.start")
psetdiff(ranges(y), x)
try(psetdiff(x, ranges(y)))
start(x)[4] <- -99
end(y)[4] <- 99
psetdiff(x, ranges(y))
pgap(x, ranges(y))

On RangesList objects:
irl1 <- IRangesList(a = IRanges(c(1,2),c(4,3)), b = IRanges(c(4,6),c(10,7)))
irl2 <- IRangesList(c = IRanges(c(0,2),c(4,5)), a = IRanges(c(4,5),c(6,7)))
union(irl1, irl2)
intersect(irl1, irl2)
setdiff(irl1, irl2)

slice-methods Slice a vector-like or list-like object

Description

slice is a generic function that creates views on a vector-like or list-like object that contain the
elements that are within the specified bounds.

Usage

slice(x, lower=-Inf, upper=Inf, ...)

S4 method for signature 'Rle'

slice-methods 105

slice(x, lower=-Inf, upper=Inf,
includeLower=TRUE, includeUpper=TRUE, rangesOnly=FALSE)

S4 method for signature 'RleList'
slice(x, lower=-Inf, upper=Inf,

includeLower=TRUE, includeUpper=TRUE, rangesOnly=FALSE)

Arguments

x An Rle or RleList object, or any object coercible to an Rle object.

lower, upper The lower and upper bounds for the slice.
includeLower, includeUpper

Logical indicating whether or not the specified boundary is open or closed.

rangesOnly A logical indicating whether or not to drop the original data from the output.

... Additional arguments to be passed to specific methods.

Details

slice is useful for finding areas of absolute maxima (peaks), absolute minima (troughs), or fluctu-
ations within specified limits. One or more view summarization methods can be used on the result
of slice. See ?`link{view-summarization-methods}`

Value

The method for Rle objects returns an RleViews object if rangesOnly=FALSE or an IRanges object
if rangesOnly=TRUE.

The method for RleList objects returns an RleViewsList object if rangesOnly=FALSE or an IRanges-
List object if rangesOnly=TRUE.

Author(s)

P. Aboyoun

See Also

• view-summarization-methods for summarizing the views returned by slice.

• slice-methods in the XVector package for more slice methods.

• coverage for computing the coverage across a set of ranges.

• The Rle, RleList, RleViews, and RleViewsList classes.

Examples

Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
cvg <- coverage(x)
slice(cvg, lower=2)
slice(cvg, lower=2, rangesOnly=TRUE)

106 updateObject-methods

updateObject-methods Update an object of a class defined in the IRanges package to its cur-
rent class definition

Description

The IRanges package provides an extensive collection of updateObject methods for updating al-
most any instance of a class defined in the package.

Usage

Showing usage of method defined for IntegerList objects only (usage
is the same for all methods).

S4 method for signature 'IntegerList'
updateObject(object, ..., verbose=FALSE)

Arguments

object Object to be updated. Many (but not all) IRanges classes are supported. If no
specific method is available for the object, then the default method (defined in
the BiocGenerics package) is used. See ?updateObject for a description of the
default method.

..., verbose See ?updateObject.

Value

Returns a valid instance of object.

Author(s)

The Bioconductor Dev Team

See Also

updateObject

Vector-class-leftovers 107

Vector-class-leftovers

Vector objects (old man page)

Description

IMPORTANT NOTE - 4/29/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Vector objects located in the S4Vectors
package.

Evaluation

In the following code snippets, x is a Vector object.

with(x, expr): Evaluates expr within as.env(x) via eval(x).

eval(expr, envir, enclos=parent.frame()): Evaluates expr within envir, where envir is
coerced to an environment with as.env(envir, enclos). The expr is first processed with
bquote, such that any escaped symbols are directly resolved in the calling frame.

Convenience wrappers for common subsetting operations

In the code snippets below, x is a Vector object or regular R vector object. The R vector object
methods for window are defined in this package and the remaining methods are defined in base R.

window(x, start=NA, end=NA, width=NA): Extract the subsequence window from the Vector
object using:

start, end, width The start, end, or width of the window. Two of the three are required.

window(x, start=NA, end=NA, width=NA) <- value: Replace the subsequence window
specified on the left (i.e. the subsequence in x specified by start, end and width) by value.
value must either be of class class(x), belong to a subclass of class(x), or be coercible to
class(x) or a subclass of class(x). The elements of value are repeated to create a Vector
with the same number of elements as the width of the subsequence window it is replacing.

head(x, n = 6L): If n is non-negative, returns the first n elements of the Vector object. If n is
negative, returns all but the last abs(n) elements of the Vector object.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the Vector object. If n is
negative, returns all but the first abs(n) elements of the Vector object.

rev(x): Return a new Vector object made of the original elements in the reverse order.

rep(x, times, length.out, each), rep.int(x, times): Repeats the values in x through one
of the following conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

subset(x, subset): Return a new Vector object made of the subset using logical vector subset,
where missing values are taken as FALSE.

108 view-summarization-methods

Combining

In the code snippets below, x is a Vector object.

mstack(..., .index.var = "name"): A variant of stack, where the list is taken as the list
of arguments in ..., each of which should be a Vector or vector (mixing the two will not
work).

Looping

In the code snippets below, x is a Vector object.

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE): Like the standard tapply func-
tion defined in the base package, the tapply method for Vector objects applies a function to
each cell of a ragged array, that is to each (non-empty) group of values given by a unique
combination of the levels of certain factors.

shiftApply(SHIFT, X, Y, FUN, ..., OFFSET = 0L, simplify = TRUE, verbose = FALSE):
Let i be the indices in SHIFT, X_i = window(X, 1 + OFFSET, length(X) - SHIFT[i]),
and Y_i = window(Y, 1 + SHIFT[i], length(Y) - OFFSET). Calculates the set of
FUN(X_i, Y_i, ...) values and return the results in a convenient form:

SHIFT A non-negative integer vector of shift values.
X, Y The Vector or R vector objects to shift.
FUN The function, found via match.fun, to be applied to each set of shifted vectors.
. . . Further arguments for FUN.
OFFSET A non-negative integer offset to maintain throughout the shift operations.
simplify A logical value specifying whether or not the result should be simplified to a vector

or matrix if possible.
verbose A logical value specifying whether or not to print the i indices to track the iterations.

Coercion

as.list(x): coerce a Vector to a list, where the ith element of the result corresponds to x[i].

See Also

The Vector class defined and documented in the S4Vectors package.

view-summarization-methods

Summarize views on a vector-like object with numeric values

Description

viewApply applies a function on each view of a Views or ViewsList object.

viewMins, viewMaxs, viewSums, viewMeans calculate respectively the minima, maxima, sums, and
means of the views in a Views or ViewsList object.

view-summarization-methods 109

Usage

viewApply(X, FUN, ..., simplify = TRUE)

viewMins(x, na.rm=FALSE)
S4 method for signature 'Views'
min(x, ..., na.rm = FALSE)

viewMaxs(x, na.rm=FALSE)
S4 method for signature 'Views'
max(x, ..., na.rm = FALSE)

viewSums(x, na.rm=FALSE)
S4 method for signature 'Views'
sum(x, ..., na.rm = FALSE)

viewMeans(x, na.rm=FALSE)
S4 method for signature 'Views'
mean(x, ...)

viewWhichMins(x, na.rm=FALSE)
S4 method for signature 'Views'
which.min(x)

viewWhichMaxs(x, na.rm=FALSE)
S4 method for signature 'Views'
which.max(x)

viewRangeMins(x, na.rm=FALSE)

viewRangeMaxs(x, na.rm=FALSE)

Arguments

X A Views object.

FUN The function to be applied to each view in X.

... Additional arguments to be passed on.

simplify A logical value specifying whether or not the result should be simplified to a
vector or matrix if possible.

x An RleViews or RleViewsList object.

na.rm Logical indicating whether or not to include missing values in the results.

Details

The viewMins, viewMaxs, viewSums, and viewMeans functions provide efficient methods for cal-
culating the specified numeric summary by performing the looping in compiled code.

The viewWhichMins, viewWhichMaxs, viewRangeMins, and viewRangeMaxs functions provide ef-
ficient methods for finding the locations of the minima and maxima.

110 view-summarization-methods

Value

For all the functions in this man page (except viewRangeMins and viewRangeMaxs): A numeric
vector of the length of x if x is an RleViews object, or a List object of the length of x if it’s an
RleViewsList object.

For viewRangeMins and viewRangeMaxs: An IRanges object if x is an RleViews object, or an
IRangesList object if it’s an RleViewsList object.

Note

For convenience, methods for min, max, sum, mean, which.min and which.max are provided as
wrappers around the corresponding view* functions (which might be deprecated at some point).

Author(s)

P. Aboyoun

See Also

• The slice function for slicing an Rle or RleList object.

• view-summarization-methods in the XVector package for more view summarization methods.

• The RleViews and RleViewsList classes.

• The which.min and colSums functions.

Examples

Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
cvg <- coverage(x)
cvg_views <- slice(cvg, lower=2)

viewApply(cvg_views, diff)

viewMins(cvg_views)
viewMaxs(cvg_views)

viewSums(cvg_views)
viewMeans(cvg_views)

viewWhichMins(cvg_views)
viewWhichMaxs(cvg_views)

viewRangeMins(cvg_views)
viewRangeMaxs(cvg_views)

Views-class 111

Views-class Views objects

Description

The Views virtual class is a general container for storing a set of views on an arbitrary Vector object,
called the "subject".

Its primary purpose is to introduce concepts and provide some facilities that can be shared by the
concrete classes that derive from it.

Some direct subclasses of the Views class are: RleViews, XIntegerViews (defined in the XVector
package), XStringViews (defined in the Biostrings package), etc...

Constructor

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): This constructor is a
generic function with dispatch on argument subject. Specific methods must be defined for
the subclasses of the Views class. For example a method for XString subjects is defined in the
Biostrings package that returns an XStringViews object. There is no default method.
The treatment of the start, end and width arguments is the same as with the IRanges
constructor, except that, in addition, Views allows start to be a Ranges object. With this
feature, Views(subject, IRanges(my_starts, my_ends, my_widths, my_names)) and
Views(subject, my_starts, my_ends, my_widths, my_names) are equivalent (except
when my_starts is itself a Ranges object).

Coercion

In the code snippets below, from is a Views object:

as(from, "IRanges"): Creates an IRanges object containing the view locations in from.

Accessor-like methods

All the accessor-like methods defined for IRanges objects work on Views objects. In addition, the
following accessors are defined for Views objects:

subject(x): Return the subject of the views.

Subsetting

x[i]: Select the views specified by i.

x[[i]]: Extracts the view selected by i as an object of the same class as subject(x). Subscript
i can be a single integer or a character string. The result is the subsequence of subject(x)
defined by window(subject(x), start=start(x)[i], end=end(x)[i]) or an error if the
view is "out of limits" (i.e. start(x)[i] < 1 or end(x)[i] > length(subject(x))).

112 Views-class

Combining

c(x, ..., ignore.mcols=FALSE): Combine Views objects. They must have the same subject.

Other methods

trim(x, use.names=TRUE): Equivalent to restrict(x, start=1L, end=length(subject(x)), keep.all.ranges=TRUE, use.names=use.names).

subviews(x, start=NA, end=NA, width=NA, use.names=TRUE): start, end, and width argu-
ments must be vectors of integers, eventually with NAs, that contain coordinates relative to the
current ranges. Equivalent to trim(narrow(x, start=start, end=end, width=width, use.names=use.names)).

successiveViews(subject, width, gapwidth=0, from=1): Equivalent to Views(subject, successiveIRanges(width, gapwidth, from)).
See ?successiveIRanges for a description of the width, gapwidth and from arguments.

Author(s)

H. Pages

See Also

IRanges-class, Vector-class, IRanges-utils, XVector.

Some direct subclasses of the Views class: RleViews-class, XIntegerViews-class, XDoubleViews-
class, XStringViews-class.

findOverlaps.

Examples

showClass("Views") # shows (some of) the known subclasses

Create a set of 4 views on an XInteger subject of length 10:
subject <- Rle(3:-6)
v1 <- Views(subject, start=4:1, end=4:7)

Extract the 2nd view:
v1[[2]]

Some views can be "out of limits"
v2 <- Views(subject, start=4:-1, end=6)
trim(v2)
subviews(v2, end=-2)

See ?`XIntegerViews-class` in the XVector package for more examples.

ViewsList-class 113

ViewsList-class List of Views

Description

An extension of List that holds only Views objects.

Details

ViewsList is a virtual class. Specialized subclasses like e.g. RleViewsList are useful for storing cov-
erage vectors over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews
object.

As a Vector subclass, ViewsList may be annotated with its universe identifier (e.g. a genome) in
which all of its spaces exist.

As a List subclass, ViewsList inherits all the methods available for List objects. It also presents
an API that is very similar to that of Views, where operations are vectorized over the elements and
generally return lists.

Author(s)

P. Aboyoun and H. Pages

See Also

List-class, RleViewsList-class.

findOverlaps.

Examples

showClass("ViewsList")

Index

!,CompressedList-method
(CompressedList-class), 6

∗Topic arith
view-summarization-methods, 108

∗Topic classes
AtomicList, 3
CompressedList-class, 6
DataFrameList-class, 14
FilterMatrix-class, 20
FilterRules-class, 20
GappedRanges-class, 29
Grouping-class, 31
Hits-class-leftovers, 36
HitsList-class, 37
IntervalForest-class, 44
IntervalTree-class, 45
IRanges-class, 53
IRangesList-class, 60
List-class-leftovers, 61
mapCoords-methods, 62
MaskCollection-class, 63
NCList-class, 66
RangedData-class, 71
RangedDataList-class, 77
RangedSelection-class, 78
Ranges-class, 79
RangesList-class, 88
rdapply, 90
Rle-class-leftovers, 97
RleViews-class, 98
RleViewsList-class, 99
Vector-class-leftovers, 107
Views-class, 111
ViewsList-class, 113

∗Topic manip
extractList, 17
multisplit, 65
read.Mask, 93
reverse, 96

seqapply, 100
updateObject-methods, 106

∗Topic methods
AtomicList, 3
CompressedList-class, 6
coverage-methods, 8
DataFrame-utils, 13
DataFrameList-class, 14
expand, 16
FilterMatrix-class, 20
FilterRules-class, 20
findOverlaps-methods, 24
GappedRanges-class, 29
Grouping-class, 31
Hits-class-leftovers, 36
HitsList-class, 37
IntervalForest-class, 44
IntervalTree-class, 45
IRanges-class, 53
IRangesList-class, 60
List-class-leftovers, 61
mapCoords-methods, 62
MaskCollection-class, 63
NCList-class, 66
RangedData-class, 71
RangedSelection-class, 78
Ranges-class, 79
Ranges-comparison, 84
RangesList-class, 88
rdapply, 90
reverse, 96
Rle-class-leftovers, 97
RleViews-class, 98
RleViewsList-class, 99
slice-methods, 104
Vector-class-leftovers, 107
view-summarization-methods, 108
Views-class, 111
ViewsList-class, 113

114

INDEX 115

∗Topic utilities
coverage-methods, 8
inter-range-methods, 38
intra-range-methods, 47
IRanges-constructor, 55
IRanges-utils, 58
nearest-methods, 68
setops-methods, 102

[,CompressedSplitDataFrameList-method
(DataFrameList-class), 14

[,FilterMatrix-method
(FilterMatrix-class), 20

[,FilterRules-method
(FilterRules-class), 20

[,IntervalForest-method
(IntervalForest-class), 44

[,RangedData-method (RangedData-class),
71

[,SimpleSplitDataFrameList-method
(DataFrameList-class), 14

[<-,SplitDataFrameList-method
(DataFrameList-class), 14

[[,RangedData-method
(RangedData-class), 71

[[,SDFLWrapperForTransform-method
(DataFrameList-class), 14

[[<-,CompressedList-method
(CompressedList-class), 6

[[<-,FilterRules-method
(FilterRules-class), 20

[[<-,RangedData-method
(RangedData-class), 71

[[<-,SDFLWrapperForTransform-method
(DataFrameList-class), 14

$<-,CompressedList-method
(CompressedList-class), 6

$<-,RangedData-method
(RangedData-class), 71

%outside% (findOverlaps-methods), 24
%over% (findOverlaps-methods), 24
%within% (findOverlaps-methods), 24

active (MaskCollection-class), 63
active,FilterRules-method

(FilterRules-class), 20
active,MaskCollection-method

(MaskCollection-class), 63
active<- (MaskCollection-class), 63

active<-,FilterRules-method
(FilterRules-class), 20

active<-,MaskCollection-method
(MaskCollection-class), 63

all,CompressedRleList-method
(AtomicList), 3

alphabetFrequency, 63, 65
append,FilterRules,FilterRules-method

(FilterRules-class), 20
append,MaskCollection,MaskCollection-method

(MaskCollection-class), 63
applyFun (rdapply), 90
applyFun,RDApplyParams-method

(rdapply), 90
applyFun<- (rdapply), 90
applyFun<-,RDApplyParams-method

(rdapply), 90
applyParams (rdapply), 90
applyParams,RDApplyParams-method

(rdapply), 90
applyParams<- (rdapply), 90
applyParams<-,RDApplyParams-method

(rdapply), 90
as.data.frame, 80, 82
as.data.frame,GappedRanges-method

(GappedRanges-class), 29
as.data.frame,Hits-method

(Hits-class-leftovers), 36
as.data.frame,RangedData-method

(RangedData-class), 71
as.data.frame,Ranges-method

(Ranges-class), 79
as.data.frame.GappedRanges

(GappedRanges-class), 29
as.data.frame.Hits

(Hits-class-leftovers), 36
as.data.frame.RangedData

(RangedData-class), 71
as.data.frame.Ranges (Ranges-class), 79
as.env,RangedData-method

(RangedData-class), 71
as.env,SDFLWrapperForTransform-method

(DataFrameList-class), 14
as.integer,Ranges-method

(Ranges-class), 79
as.list,CompressedAtomicList-method

(AtomicList), 3
as.list,CompressedNormalIRangesList-method

116 INDEX

(IRangesList-class), 60
as.list,Hits-method

(Hits-class-leftovers), 36
as.list,Vector-method

(Vector-class-leftovers), 107
as.list.CompressedNormalIRangesList

(IRangesList-class), 60
as.list.Hits (Hits-class-leftovers), 36
as.list.Vector

(Vector-class-leftovers), 107
as.matrix, 82
as.matrix,CompressedHitsList-method

(HitsList-class), 37
as.matrix,HitsList-method

(HitsList-class), 37
as.matrix,Ranges-method (Ranges-class),

79
as.matrix,Views-method (Views-class),

111
as.matrix,ViewsList-method

(ViewsList-class), 113
as.table,HitsList-method

(HitsList-class), 37
as.vector,AtomicList-method

(AtomicList), 3
asNormalIRanges (IRanges-utils), 58
AtomicList, 3
AtomicList-class (AtomicList), 3

bquote, 107
breakInChunks (IRanges-utils), 58

c,CompressedList-method
(CompressedList-class), 6

c,FilterRules-method
(FilterRules-class), 20

c,GappedRanges-method
(GappedRanges-class), 29

c,IRanges-method (IRanges-class), 53
c,RangedData-method (RangedData-class),

71
c,Views-method (Views-class), 111
cbind,DataFrameList-method

(DataFrameList-class), 14
cbind,FilterMatrix-method

(FilterMatrix-class), 20
CharacterList, 7, 49
CharacterList (AtomicList), 3
CharacterList-class (AtomicList), 3

chartr,ANY,ANY,CompressedCharacterList-method
(AtomicList), 3

chartr,ANY,ANY,CompressedRleList-method
(AtomicList), 3

chartr,ANY,ANY,SimpleCharacterList-method
(AtomicList), 3

chartr,ANY,ANY,SimpleRleList-method
(AtomicList), 3

class:AtomicList (AtomicList), 3
class:CharacterList (AtomicList), 3
class:ComplexList (AtomicList), 3
class:CompressedAtomicList

(AtomicList), 3
class:CompressedCharacterList

(AtomicList), 3
class:CompressedComplexList

(AtomicList), 3
class:CompressedFactorList

(AtomicList), 3
class:CompressedHitsList

(HitsList-class), 37
class:CompressedIntegerList

(AtomicList), 3
class:CompressedIRangesList

(IRangesList-class), 60
class:CompressedList

(CompressedList-class), 6
class:CompressedLogicalList

(AtomicList), 3
class:CompressedNormalIRangesList

(IRangesList-class), 60
class:CompressedNumericList

(AtomicList), 3
class:CompressedRawList (AtomicList), 3
class:CompressedRleList (AtomicList), 3
class:Dups (Grouping-class), 31
class:FactorList (AtomicList), 3
class:GappedRanges

(GappedRanges-class), 29
class:Grouping (Grouping-class), 31
class:H2LGrouping (Grouping-class), 31
class:HitsList (HitsList-class), 37
class:IntegerList (AtomicList), 3
class:IRanges (IRanges-class), 53
class:IRangesList (IRangesList-class),

60
class:LogicalList (AtomicList), 3
class:ManyToOneGrouping

INDEX 117

(Grouping-class), 31
class:MaskCollection

(MaskCollection-class), 63
class:NCList (NCList-class), 66
class:NCLists (NCList-class), 66
class:NormalIRanges (IRanges-class), 53
class:NormalIRangesList

(IRangesList-class), 60
class:NumericList (AtomicList), 3
class:Partitioning (Grouping-class), 31
class:PartitioningByEnd

(Grouping-class), 31
class:PartitioningByWidth

(Grouping-class), 31
class:PartitioningMap (Grouping-class),

31
class:RangedData (RangedData-class), 71
class:Ranges (Ranges-class), 79
class:RangesList-class

(RangesList-class), 88
class:RangesORmissing

(nearest-methods), 68
class:RawList (AtomicList), 3
class:RleList (AtomicList), 3
class:RleViews (RleViews-class), 98
class:SimpleAtomicList (AtomicList), 3
class:SimpleCharacterList (AtomicList),

3
class:SimpleComplexList (AtomicList), 3
class:SimpleFactorList (AtomicList), 3
class:SimpleIntegerList (AtomicList), 3
class:SimpleIRangesList

(IRangesList-class), 60
class:SimpleLogicalList (AtomicList), 3
class:SimpleNormalIRangesList

(IRangesList-class), 60
class:SimpleNumericList (AtomicList), 3
class:SimpleRangesList-class

(RangesList-class), 88
class:SimpleRawList (AtomicList), 3
class:SimpleRleList (AtomicList), 3
class:SimpleViewsList

(ViewsList-class), 113
class:Views (Views-class), 111
class:ViewsList (ViewsList-class), 113
classNameForDisplay, 8
classNameForDisplay,CompressedList-method

(CompressedList-class), 6

coerce,ANY,CompressedList-method
(CompressedList-class), 6

coerce,ANY,CompressedSplitDataFrameList-method
(DataFrameList-class), 14

coerce,ANY,SimpleSplitDataFrameList-method
(DataFrameList-class), 14

coerce,ANY,SplitDataFrameList-method
(DataFrameList-class), 14

coerce,AtomicList,CharacterList-method
(AtomicList), 3

coerce,AtomicList,ComplexList-method
(AtomicList), 3

coerce,AtomicList,IntegerList-method
(AtomicList), 3

coerce,AtomicList,LogicalList-method
(AtomicList), 3

coerce,AtomicList,NumericList-method
(AtomicList), 3

coerce,AtomicList,RawList-method
(AtomicList), 3

coerce,AtomicList,RleList-method
(AtomicList), 3

coerce,AtomicList,RleViews-method
(RleViews-class), 98

coerce,CompressedAtomicList,list-method
(AtomicList), 3

coerce,CompressedIRangesList,CompressedNormalIRangesList-method
(IRangesList-class), 60

coerce,CompressedIRangesList,GappedRanges-method
(GappedRanges-class), 29

coerce,CompressedIRangesList,IntervalForest-method
(IntervalForest-class), 44

coerce,CompressedNormalIRangesList,GappedRanges-method
(GappedRanges-class), 29

coerce,CompressedRleList,CompressedIRangesList-method
(AtomicList), 3

coerce,data.frame,RangedData-method
(RangedData-class), 71

coerce,DataFrame,SplitDataFrameList-method
(DataFrameList-class), 14

coerce,DataFrameList,DataFrame-method
(DataFrameList-class), 14

coerce,DataTable,RangedData-method
(RangedData-class), 71

coerce,function,FilterClosure-method
(FilterRules-class), 20

coerce,GappedRanges,CompressedIRangesList-method
(GappedRanges-class), 29

118 INDEX

coerce,GappedRanges,CompressedNormalIRangesList-method
(GappedRanges-class), 29

coerce,GappedRanges,IRangesList-method
(GappedRanges-class), 29

coerce,GappedRanges,NormalIRangesList-method
(GappedRanges-class), 29

coerce,GappedRanges,RangesList-method
(GappedRanges-class), 29

coerce,Hits,DataFrame-method
(Hits-class-leftovers), 36

coerce,Hits,List-method
(Hits-class-leftovers), 36

coerce,Hits,list-method
(Hits-class-leftovers), 36

coerce,integer,IRanges-method
(IRanges-class), 53

coerce,integer,NormalIRanges-method
(IRanges-class), 53

coerce,IntervalForest,CompressedIRangesList-method
(IntervalForest-class), 44

coerce,IntervalForest,IRanges-method
(IntervalForest-class), 44

coerce,IntervalTree,IRanges-method
(IntervalTree-class), 45

coerce,IRanges,IntervalTree-method
(IntervalTree-class), 45

coerce,IRanges,NormalIRanges-method
(IRanges-utils), 58

coerce,List,CompressedSplitDataFrameList-method
(DataFrameList-class), 14

coerce,list,RangesList-method
(RangesList-class), 88

coerce,List,SimpleSplitDataFrameList-method
(DataFrameList-class), 14

coerce,list,SplitDataFrameList-method
(DataFrameList-class), 14

coerce,logical,IRanges-method
(IRanges-class), 53

coerce,logical,NormalIRanges-method
(IRanges-class), 53

coerce,LogicalList,CompressedIRangesList-method
(RangesList-class), 88

coerce,LogicalList,CompressedNormalIRangesList-method
(RangesList-class), 88

coerce,LogicalList,IRangesList-method
(RangesList-class), 88

coerce,LogicalList,NormalIRangesList-method
(RangesList-class), 88

coerce,LogicalList,SimpleIRangesList-method
(RangesList-class), 88

coerce,LogicalList,SimpleNormalIRangesList-method
(RangesList-class), 88

coerce,MaskCollection,NormalIRanges-method
(MaskCollection-class), 63

coerce,NCList,IRanges-method
(NCList-class), 66

coerce,NCLists,CompressedIRangesList-method
(NCList-class), 66

coerce,NCLists,IRangesList-method
(NCList-class), 66

coerce,numeric,IRanges-method
(IRanges-class), 53

coerce,numeric,NormalIRanges-method
(IRanges-class), 53

coerce,RangedData,CompressedIRangesList-method
(RangedData-class), 71

coerce,RangedData,DataFrame-method
(RangedData-class), 71

coerce,RangedData,IRangesList-method
(RangedData-class), 71

coerce,RangedData,RangesList-method
(RangedData-class), 71

coerce,Ranges,IntervalTree-method
(IntervalTree-class), 45

coerce,Ranges,IRanges-method
(IRanges-class), 53

coerce,Ranges,NCList-method
(NCList-class), 66

coerce,Ranges,PartitioningByEnd-method
(Grouping-class), 31

coerce,Ranges,PartitioningByWidth-method
(Grouping-class), 31

coerce,Ranges,RangedData-method
(RangedData-class), 71

coerce,RangesList,CompressedIRangesList-method
(RangesList-class), 88

coerce,RangesList,CompressedNormalIRangesList-method
(RangesList-class), 88

coerce,RangesList,IntervalForest-method
(IntervalForest-class), 44

coerce,RangesList,IRangesList-method
(RangesList-class), 88

coerce,RangesList,NCLists-method
(NCList-class), 66

coerce,RangesList,NormalIRangesList-method
(RangesList-class), 88

INDEX 119

coerce,RangesList,RangedData-method
(RangedData-class), 71

coerce,RangesList,RangedSelection-method
(RangedSelection-class), 78

coerce,RangesList,SimpleIRangesList-method
(RangesList-class), 88

coerce,RangesList,SimpleNormalIRangesList-method
(RangesList-class), 88

coerce,RangesList,SimpleRangesList-method
(RangesList-class), 88

coerce,Rle,IRanges-method
(Rle-class-leftovers), 97

coerce,Rle,NormalIRanges-method
(Rle-class-leftovers), 97

coerce,Rle,RangedData-method
(RangedData-class), 71

coerce,RleList,CompressedIRangesList-method
(RangesList-class), 88

coerce,RleList,CompressedNormalIRangesList-method
(RangesList-class), 88

coerce,RleList,IRangesList-method
(RangesList-class), 88

coerce,RleList,NormalIRangesList-method
(RangesList-class), 88

coerce,RleList,RangedData-method
(RangedData-class), 71

coerce,RleList,SimpleIRangesList-method
(RangesList-class), 88

coerce,RleList,SimpleNormalIRangesList-method
(RangesList-class), 88

coerce,RleViewsList,CompressedIRangesList-method
(RleViewsList-class), 99

coerce,RleViewsList,IRangesList-method
(RleViewsList-class), 99

coerce,RleViewsList,RangedData-method
(RangedData-class), 71

coerce,RleViewsList,SimpleIRangesList-method
(RleViewsList-class), 99

coerce,SimpleIRangesList,SimpleNormalIRangesList-method
(IRangesList-class), 60

coerce,SimpleList,SplitDataFrameList-method
(DataFrameList-class), 14

coerce,SimpleRangesList,SimpleIRangesList-method
(RangesList-class), 88

coerce,SplitDataFrameList,DataFrame-method
(DataFrameList-class), 14

coerce,standardGeneric,FilterClosure-method
(FilterRules-class), 20

coerce,vector,AtomicList-method
(AtomicList), 3

coerce,vector,CompressedCharacterList-method
(AtomicList), 3

coerce,vector,CompressedComplexList-method
(AtomicList), 3

coerce,vector,CompressedIntegerList-method
(AtomicList), 3

coerce,vector,CompressedLogicalList-method
(AtomicList), 3

coerce,vector,CompressedNumericList-method
(AtomicList), 3

coerce,vector,CompressedRawList-method
(AtomicList), 3

coerce,vector,CompressedRleList-method
(AtomicList), 3

coerce,vector,SimpleCharacterList-method
(AtomicList), 3

coerce,vector,SimpleComplexList-method
(AtomicList), 3

coerce,vector,SimpleIntegerList-method
(AtomicList), 3

coerce,vector,SimpleLogicalList-method
(AtomicList), 3

coerce,vector,SimpleNumericList-method
(AtomicList), 3

coerce,vector,SimpleRawList-method
(AtomicList), 3

coerce,vector,SimpleRleList-method
(AtomicList), 3

coerce,Vector,Views-method
(Views-class), 111

coerce,Views,IRanges-method
(Views-class), 111

coerce,Views,NormalIRanges-method
(Views-class), 111

coerce,Views,Ranges-method
(Views-class), 111

collapse (MaskCollection-class), 63
collapse,MaskCollection-method

(MaskCollection-class), 63
colnames,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
colnames,DataFrameList-method

(DataFrameList-class), 14
colnames,RangedData-method

(RangedData-class), 71
colnames,RangedSelection-method

120 INDEX

(RangedSelection-class), 78
colnames,SimpleSplitDataFrameList-method

(DataFrameList-class), 14
colnames<-,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
colnames<-,RangedData-method

(RangedData-class), 71
colnames<-,RangedSelection-method

(RangedSelection-class), 78
colnames<-,SimpleDataFrameList-method

(DataFrameList-class), 14
colSums, 110
columnMetadata (DataFrameList-class), 14
columnMetadata,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
columnMetadata,RangedData-method

(RangedData-class), 71
columnMetadata,SimpleSplitDataFrameList-method

(DataFrameList-class), 14
columnMetadata<- (DataFrameList-class),

14
columnMetadata<-,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
columnMetadata<-,RangedData-method

(RangedData-class), 71
columnMetadata<-,SimpleSplitDataFrameList-method

(DataFrameList-class), 14
compare, 82
compare (Ranges-comparison), 84
compare,Ranges,Ranges-method

(Ranges-comparison), 84
Complex,CompressedAtomicList-method

(AtomicList), 3
Complex,SimpleAtomicList-method

(AtomicList), 3
ComplexList (AtomicList), 3
ComplexList-class (AtomicList), 3
CompressedAtomicList (AtomicList), 3
CompressedAtomicList-class

(AtomicList), 3
CompressedCharacterList, 7
CompressedCharacterList (AtomicList), 3
CompressedCharacterList-class

(AtomicList), 3
CompressedComplexList (AtomicList), 3
CompressedComplexList-class

(AtomicList), 3
CompressedFactorList (AtomicList), 3

CompressedFactorList-class
(AtomicList), 3

CompressedHitsList, 45
CompressedHitsList (HitsList-class), 37
CompressedHitsList-class

(HitsList-class), 37
CompressedIntegerList, 7, 8
CompressedIntegerList (AtomicList), 3
CompressedIntegerList-class

(AtomicList), 3
CompressedIRangesList, 4, 29, 44, 89, 98
CompressedIRangesList

(IRangesList-class), 60
CompressedIRangesList-class

(IRangesList-class), 60
CompressedList (CompressedList-class), 6
CompressedList-class, 6
CompressedLogicalList, 7
CompressedLogicalList (AtomicList), 3
CompressedLogicalList-class

(AtomicList), 3
CompressedNormalIRangesList, 4, 29, 30,

89
CompressedNormalIRangesList

(IRangesList-class), 60
CompressedNormalIRangesList-class, 30
CompressedNormalIRangesList-class

(IRangesList-class), 60
CompressedNumericList (AtomicList), 3
CompressedNumericList-class

(AtomicList), 3
CompressedRawList (AtomicList), 3
CompressedRawList-class (AtomicList), 3
CompressedRleList, 7, 98
CompressedRleList (AtomicList), 3
CompressedRleList-class (AtomicList), 3
CompressedSplitDataFrameList, 4, 13
CompressedSplitDataFrameList-class

(DataFrameList-class), 14
cor,AtomicList,AtomicList-method

(AtomicList), 3
countOverlaps, 67
countOverlaps (findOverlaps-methods), 24
countOverlaps,ANY,missing-method

(findOverlaps-methods), 24
countOverlaps,ANY,Vector-method

(findOverlaps-methods), 24
countOverlaps,NCList,Ranges-method

INDEX 121

(findOverlaps-methods), 24
countOverlaps,RangedData,RangedData-method

(findOverlaps-methods), 24
countOverlaps,RangedData,RangesList-method

(findOverlaps-methods), 24
countOverlaps,Ranges,NCList-method

(findOverlaps-methods), 24
countOverlaps,RangesList,IntervalForest-method

(findOverlaps-methods), 24
countOverlaps,RangesList,RangedData-method

(findOverlaps-methods), 24
countOverlaps,RangesList,RangesList-method

(findOverlaps-methods), 24
countOverlaps,Vector,ViewsList-method

(findOverlaps-methods), 24
countOverlaps,ViewsList,Vector-method

(findOverlaps-methods), 24
countOverlaps,ViewsList,ViewsList-method

(findOverlaps-methods), 24
cov,AtomicList,AtomicList-method

(AtomicList), 3
coverage, 105
coverage (coverage-methods), 8
coverage,RangedData-method

(coverage-methods), 8
coverage,Ranges-method

(coverage-methods), 8
coverage,RangesList-method

(coverage-methods), 8
coverage,Views-method

(coverage-methods), 8
coverage-methods, 8, 10
cummax,CompressedAtomicList-method

(AtomicList), 3
cummin,CompressedAtomicList-method

(AtomicList), 3
cumprod,CompressedAtomicList-method

(AtomicList), 3
cumsum, 34
cumsum,CompressedAtomicList-method

(AtomicList), 3

DataFrame, 13, 14, 16, 19, 72–74
DataFrame-class, 16
DataFrame-utils, 13
DataFrameList (DataFrameList-class), 14
DataFrameList-class, 14
DataTable, 14, 72, 75
desc (MaskCollection-class), 63

desc,MaskCollection-method
(MaskCollection-class), 63

desc<- (MaskCollection-class), 63
desc<-,MaskCollection-method

(MaskCollection-class), 63
diff, 34
diff,IntegerList-method (AtomicList), 3
diff,NumericList-method (AtomicList), 3
diff,RleList-method (AtomicList), 3
dim,DataFrameList-method

(DataFrameList-class), 14
dimnames,DataFrameList-method

(DataFrameList-class), 14
dimnames<-,DataFrameList-method

(DataFrameList-class), 14
disjoin (inter-range-methods), 38
disjoin,CompressedIRangesList-method

(inter-range-methods), 38
disjoin,IntervalForest-method

(inter-range-methods), 38
disjoin,Ranges-method

(inter-range-methods), 38
disjoin,RangesList-method

(inter-range-methods), 38
disjointBins (inter-range-methods), 38
disjointBins,Ranges-method

(inter-range-methods), 38
disjointBins,RangesList-method

(inter-range-methods), 38
distance (nearest-methods), 68
distance,Ranges,Ranges-method

(nearest-methods), 68
distanceToNearest (nearest-methods), 68
distanceToNearest,Ranges,RangesORmissing-method

(nearest-methods), 68
drop,AtomicList-method (AtomicList), 3
duplicated, 86
duplicated,CompressedIntegerList-method

(AtomicList), 3
duplicated,CompressedList-method

(AtomicList), 3
duplicated,Dups-method

(Grouping-class), 31
duplicated.CompressedIntegerList

(AtomicList), 3
duplicated.CompressedList (AtomicList),

3
duplicated.Dups (Grouping-class), 31

122 INDEX

Dups (Grouping-class), 31
Dups-class (Grouping-class), 31

elementLengths,CompressedList-method
(CompressedList-class), 6

elementLengths,GappedRanges-method
(GappedRanges-class), 29

elementLengths,IntervalForest-method
(IntervalForest-class), 44

elementLengths,NCLists-method
(NCList-class), 66

elementLengths,RangedData-method
(RangedData-class), 71

elementLengths,Ranges-method
(Ranges-class), 79

elementLengths,Views-method
(Views-class), 111

end,CompressedIRangesList-method
(IRangesList-class), 60

end,GappedRanges-method
(GappedRanges-class), 29

end,IntervalForest-method
(IntervalForest-class), 44

end,IntervalTree-method
(IntervalTree-class), 45

end,NCList-method (NCList-class), 66
end,NCLists-method (NCList-class), 66
end,PartitioningByEnd-method

(Grouping-class), 31
end,PartitioningByWidth-method

(Grouping-class), 31
end,RangedData-method

(RangedData-class), 71
end,Ranges-method (Ranges-class), 79
end,RangesList-method

(RangesList-class), 88
end,SimpleViewsList-method

(ViewsList-class), 113
end,Views-method (Views-class), 111
end<- (Ranges-class), 79
end<-,IRanges-method (IRanges-class), 53
end<-,RangedData-method

(RangedData-class), 71
end<-,RangesList-method

(RangesList-class), 88
end<-,Views-method (Views-class), 111
endoapply, 97
endoapply,CompressedList-method

(CompressedList-class), 6

endoapply,RangedData-method
(RangedData-class), 71

eval (Vector-class-leftovers), 107
eval,expression,Vector-method

(Vector-class-leftovers), 107
eval,FilterRules,ANY-method

(FilterRules-class), 20
eval,language,Vector-method

(Vector-class-leftovers), 107
evalSeparately, 20
evalSeparately (FilterRules-class), 20
evalSeparately,FilterRules-method

(FilterRules-class), 20
expand, 16
expand,DataFrame-method (expand), 16
extractList, 17
extractList,ANY,ANY-method

(extractList), 17
extractList,ANY-method (extractList), 17

FactorList (AtomicList), 3
FactorList-class (AtomicList), 3
FilterMatrix (FilterMatrix-class), 20
FilterMatrix-class, 20
FilterRules, 20, 91, 92
FilterRules (FilterRules-class), 20
filterRules (rdapply), 90
filterRules,FilterMatrix-method

(FilterMatrix-class), 20
filterRules,RDApplyParams-method

(rdapply), 90
FilterRules-class, 20
filterRules<- (rdapply), 90
filterRules<-,RDApplyParams-method

(rdapply), 90
findOverlaps, 38, 44, 45, 47, 66–70, 87, 112,

113
findOverlaps (findOverlaps-methods), 24
findOverlaps,GenomicRanges,GenomicRanges-method,

27
findOverlaps,integer,Ranges-method

(findOverlaps-methods), 24
findOverlaps,NCList,Ranges-method

(findOverlaps-methods), 24
findOverlaps,RangedData,RangedData-method

(findOverlaps-methods), 24
findOverlaps,RangedData,RangesList-method

(findOverlaps-methods), 24

INDEX 123

findOverlaps,Ranges,IntervalTree-method
(findOverlaps-methods), 24

findOverlaps,Ranges,NCList-method
(findOverlaps-methods), 24

findOverlaps,Ranges,Ranges-method
(findOverlaps-methods), 24

findOverlaps,RangesList,IntervalForest-method
(findOverlaps-methods), 24

findOverlaps,RangesList,RangedData-method
(findOverlaps-methods), 24

findOverlaps,RangesList,RangesList-method
(findOverlaps-methods), 24

findOverlaps,Vector,missing-method
(findOverlaps-methods), 24

findOverlaps,Vector,Views-method
(findOverlaps-methods), 24

findOverlaps,Vector,ViewsList-method
(findOverlaps-methods), 24

findOverlaps,Views,Vector-method
(findOverlaps-methods), 24

findOverlaps,Views,Views-method
(findOverlaps-methods), 24

findOverlaps,ViewsList,Vector-method
(findOverlaps-methods), 24

findOverlaps,ViewsList,ViewsList-method
(findOverlaps-methods), 24

findOverlaps-methods, 24
findRange (Rle-class-leftovers), 97
findRange,Rle-method

(Rle-class-leftovers), 97
flank (intra-range-methods), 47
flank,CompressedIRangesList-method

(intra-range-methods), 47
flank,IntervalForest-method

(intra-range-methods), 47
flank,Ranges-method

(intra-range-methods), 47
flank,RangesList-method

(intra-range-methods), 47
follow (nearest-methods), 68
follow,Ranges,RangesORmissing-method

(nearest-methods), 68

GAlignmentsList, 7
GappedRanges (GappedRanges-class), 29
GappedRanges-class, 29
gaps (inter-range-methods), 38
gaps,CompressedIRangesList-method

(inter-range-methods), 38

gaps,IntervalForest-method
(inter-range-methods), 38

gaps,IRanges-method
(inter-range-methods), 38

gaps,MaskCollection-method
(inter-range-methods), 38

gaps,Ranges-method
(inter-range-methods), 38

gaps,RangesList-method
(inter-range-methods), 38

gaps,Views-method
(inter-range-methods), 38

GenomicRanges, 24, 41, 44, 51, 67, 70, 86
GenomicRanges-comparison, 87
GIntervalTree, 44, 45, 67
GNCList, 67, 68
GRanges, 27, 70
GRangesList, 7, 24, 27
Grouping (Grouping-class), 31
Grouping-class, 31
grouplength (Grouping-class), 31
grouplength,Grouping-method

(Grouping-class), 31
grouplength,H2LGrouping-method

(Grouping-class), 31
grouplength,Partitioning-method

(Grouping-class), 31
grouprank (Grouping-class), 31
grouprank,H2LGrouping-method

(Grouping-class), 31
gsub,ANY,ANY,CompressedCharacterList-method

(AtomicList), 3
gsub,ANY,ANY,CompressedRleList-method

(AtomicList), 3
gsub,ANY,ANY,SimpleCharacterList-method

(AtomicList), 3
gsub,ANY,ANY,SimpleRleList-method

(AtomicList), 3

H2LGrouping (Grouping-class), 31
H2LGrouping-class (Grouping-class), 31
high2low (Grouping-class), 31
high2low,H2LGrouping-method

(Grouping-class), 31
high2low,Vector-method

(Grouping-class), 31
high2low,vector-method

(Grouping-class), 31
Hits, 25–27, 36, 47, 67, 70, 86

124 INDEX

Hits-class-leftovers, 36
Hits-examples (Hits-class-leftovers), 36
HitsList, 25, 27
HitsList (HitsList-class), 37
HitsList-class, 37

IntegerList, 7, 25–27, 32, 40, 48, 49, 74
IntegerList (AtomicList), 3
IntegerList-class, 34
IntegerList-class (AtomicList), 3
inter-range-methods, 38, 41, 47, 51, 54, 59,

61, 82, 87, 103
intersect,CompressedIRangesList,CompressedIRangesList-method

(setops-methods), 102
intersect,Ranges,Ranges-method

(setops-methods), 102
intersect,RangesList,RangesList-method

(setops-methods), 102
IntervalForest, 27, 67
IntervalForest (IntervalForest-class),

44
IntervalForest-class, 44
IntervalTree, 25, 27, 44, 67
IntervalTree (IntervalTree-class), 45
IntervalTree-class, 45
intra-range-methods, 39, 41, 47, 51, 54, 59,

61, 82, 87, 103
IQR,AtomicList-method (AtomicList), 3
IRanges, 40, 41, 45, 46, 49, 51, 56–60, 64, 73,

80–82, 87, 94, 97, 98, 102, 103, 105,
110, 111

IRanges (IRanges-constructor), 55
IRanges-class, 34, 53, 57, 59, 82, 94, 103,

112
IRanges-constructor, 54, 55
IRanges-utils, 54, 58, 82, 103, 112
IRangesList, 60, 105, 110
IRangesList (IRangesList-class), 60
IRangesList-class, 60
isDisjoint (Ranges-class), 79
isDisjoint,NormalIRanges-method

(IRanges-class), 53
isDisjoint,Ranges-method

(Ranges-class), 79
isDisjoint,RangesList-method

(RangesList-class), 88
isEmpty,NormalIRanges-method

(IRanges-class), 53
isEmpty,Ranges-method (Ranges-class), 79

isNormal (Ranges-class), 79
isNormal,CompressedIRangesList-method

(IRangesList-class), 60
isNormal,IRanges-method

(IRanges-class), 53
isNormal,NormalIRanges-method

(IRanges-class), 53
isNormal,Ranges-method (Ranges-class),

79
isNormal,RangesList-method

(RangesList-class), 88
isNormal,SimpleIRangesList-method

(IRangesList-class), 60
iteratorFun (rdapply), 90
iteratorFun,RDApplyParams-method

(rdapply), 90
iteratorFun<- (rdapply), 90
iteratorFun<-,RDApplyParams-method

(rdapply), 90

lapply,CompressedAtomicList-method
(AtomicList), 3

lapply,CompressedList-method
(CompressedList-class), 6

lapply,RangedData-method
(RangedData-class), 71

length,CompressedList-method
(CompressedList-class), 6

length,GappedRanges-method
(GappedRanges-class), 29

length,H2LGrouping-method
(Grouping-class), 31

length,IntervalForest-method
(IntervalForest-class), 44

length,IntervalTree-method
(IntervalTree-class), 45

length,MaskCollection-method
(MaskCollection-class), 63

length,NCList-method (NCList-class), 66
length,NCLists-method (NCList-class), 66
length,PartitioningByEnd-method

(Grouping-class), 31
length,PartitioningByWidth-method

(Grouping-class), 31
length,RangedData-method

(RangedData-class), 71
length,Ranges-method (Ranges-class), 79
length,Views-method (Views-class), 111

INDEX 125

length<-,H2LGrouping-method
(Grouping-class), 31

List, 3, 5–8, 14, 17, 19, 21, 32, 61, 77, 78, 88,
90, 101, 110, 113

list, 60, 89
List-class, 113
List-class-leftovers, 61
LogicalList, 7, 26, 27, 48, 74
LogicalList (AtomicList), 3
LogicalList-class (AtomicList), 3
low2high (Grouping-class), 31
low2high,H2LGrouping-method

(Grouping-class), 31

mad,AtomicList-method (AtomicList), 3
ManyToOneGrouping (Grouping-class), 31
ManyToOneGrouping-class

(Grouping-class), 31
mapCoords (mapCoords-methods), 62
mapCoords-methods, 62
mapOrder (Grouping-class), 31
mapOrder,PartitioningMap-method

(Grouping-class), 31
mapToAlignments, 62
mapToTranscripts, 62
Mask (MaskCollection-class), 63
MaskCollection, 40, 41, 48, 51, 94, 96
MaskCollection (MaskCollection-class),

63
MaskCollection-class, 63, 94, 97
MaskCollection.show_frame

(MaskCollection-class), 63
maskedratio (MaskCollection-class), 63
maskedratio,MaskCollection-method

(MaskCollection-class), 63
maskedwidth (MaskCollection-class), 63
maskedwidth,MaskCollection-method

(MaskCollection-class), 63
MaskedXString-class, 65
match,Ranges,Ranges-method

(Ranges-comparison), 84
matchPattern, 63, 65
Math,CompressedAtomicList-method

(AtomicList), 3
Math,SimpleAtomicList-method

(AtomicList), 3
Math2,CompressedAtomicList-method

(AtomicList), 3

Math2,SimpleAtomicList-method
(AtomicList), 3

matrix, 20
max,CompressedNormalIRangesList-method

(IRangesList-class), 60
max,MaskCollection-method

(MaskCollection-class), 63
max,NormalIRanges-method

(IRanges-class), 53
max,SimpleNormalIRangesList-method

(IRangesList-class), 60
max,Views-method

(view-summarization-methods),
108

mean,AtomicList-method (AtomicList), 3
mean,Views-method

(view-summarization-methods),
108

median,AtomicList-method (AtomicList), 3
members (Grouping-class), 31
members,H2LGrouping-method

(Grouping-class), 31
members,ManyToOneGrouping-method

(Grouping-class), 31
mendoapply,CompressedList-method

(CompressedList-class), 6
merge,missing,RangesList-method

(RangesList-class), 88
merge,RangesList,missing-method

(RangesList-class), 88
merge,RangesList,RangesList-method

(RangesList-class), 88
mergeByOverlaps (findOverlaps-methods),

24
mid (Ranges-class), 79
mid,Ranges-method (Ranges-class), 79
min,CompressedNormalIRangesList-method

(IRangesList-class), 60
min,MaskCollection-method

(MaskCollection-class), 63
min,NormalIRanges-method

(IRanges-class), 53
min,SimpleNormalIRangesList-method

(IRangesList-class), 60
min,Views-method

(view-summarization-methods),
108

mseqapply (seqapply), 100

126 INDEX

mstack (Vector-class-leftovers), 107
mstack,DataFrame-method

(DataFrame-utils), 13
mstack,Vector-method

(Vector-class-leftovers), 107
mstack,vector-method

(Vector-class-leftovers), 107
multisplit, 65

names,CompressedList-method
(CompressedList-class), 6

names,GappedRanges-method
(GappedRanges-class), 29

names,IntervalForest-method
(IntervalForest-class), 44

names,IRanges-method (IRanges-class), 53
names,MaskCollection-method

(MaskCollection-class), 63
names,NCList-method (NCList-class), 66
names,NCLists-method (NCList-class), 66
names,Partitioning-method

(Grouping-class), 31
names,RangedData-method

(RangedData-class), 71
names,Views-method (Views-class), 111
names<-,CompressedList-method

(CompressedList-class), 6
names<-,GappedRanges-method

(GappedRanges-class), 29
names<-,IRanges-method (IRanges-class),

53
names<-,MaskCollection-method

(MaskCollection-class), 63
names<-,Partitioning-method

(Grouping-class), 31
names<-,RangedData-method

(RangedData-class), 71
names<-,Views-method (Views-class), 111
narrow, 57, 103
narrow (intra-range-methods), 47
narrow,CompressedIRangesList-method

(intra-range-methods), 47
narrow,IntervalForest-method

(intra-range-methods), 47
narrow,MaskCollection-method

(intra-range-methods), 47
narrow,Ranges-method

(intra-range-methods), 47

narrow,RangesList-method
(intra-range-methods), 47

narrow,Views-method
(intra-range-methods), 47

nchar,CompressedCharacterList-method
(AtomicList), 3

nchar,CompressedRleList-method
(AtomicList), 3

nchar,SimpleCharacterList-method
(AtomicList), 3

nchar,SimpleRleList-method
(AtomicList), 3

NCList, 25, 27, 45, 80
NCList (NCList-class), 66
NCList-class, 66, 82
NCLists, 44
NCLists (NCList-class), 66
NCLists-class (NCList-class), 66
ncol,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
ncol,DataFrameList-method

(DataFrameList-class), 14
ncol,RangedData-method

(RangedData-class), 71
ncol,SimpleSplitDataFrameList-method

(DataFrameList-class), 14
nearest (nearest-methods), 68
nearest,Ranges,RangesORmissing-method

(nearest-methods), 68
nearest-methods, 68
newViews (Views-class), 111
ngap (GappedRanges-class), 29
ngap,GappedRanges-method

(GappedRanges-class), 29
nir_list (MaskCollection-class), 63
nir_list,MaskCollection-method

(MaskCollection-class), 63
nobj (Grouping-class), 31
nobj,H2LGrouping-method

(Grouping-class), 31
nobj,PartitioningByEnd-method

(Grouping-class), 31
nobj,PartitioningByWidth-method

(Grouping-class), 31
NormalIRanges, 30, 59, 60, 63, 64, 81, 82, 97
NormalIRanges (IRanges-class), 53
NormalIRanges-class, 65
NormalIRanges-class (IRanges-class), 53

INDEX 127

NormalIRangesList, 60
NormalIRangesList (IRangesList-class),

60
NormalIRangesList-class

(IRangesList-class), 60
nrow,DataFrameList-method

(DataFrameList-class), 14
nrow,RangedData-method

(RangedData-class), 71
NumericList (AtomicList), 3
NumericList-class (AtomicList), 3

Ops,atomic,AtomicList-method
(AtomicList), 3

Ops,atomic,CompressedAtomicList-method
(AtomicList), 3

Ops,atomic,SimpleAtomicList-method
(AtomicList), 3

Ops,AtomicList,atomic-method
(AtomicList), 3

Ops,CompressedAtomicList,atomic-method
(AtomicList), 3

Ops,CompressedAtomicList,CompressedAtomicList-method
(AtomicList), 3

Ops,CompressedAtomicList,SimpleAtomicList-method
(AtomicList), 3

Ops,CompressedIRangesList,numeric-method
(intra-range-methods), 47

Ops,Ranges,ANY-method
(intra-range-methods), 47

Ops,Ranges,numeric-method
(intra-range-methods), 47

Ops,RangesList,numeric-method
(intra-range-methods), 47

Ops,SimpleAtomicList,atomic-method
(AtomicList), 3

Ops,SimpleAtomicList,CompressedAtomicList-method
(AtomicList), 3

Ops,SimpleAtomicList,SimpleAtomicList-method
(AtomicList), 3

order,List-method (AtomicList), 3
order,Ranges-method

(Ranges-comparison), 84
overlapsAny (findOverlaps-methods), 24
overlapsAny,RangedData,RangedData-method

(findOverlaps-methods), 24
overlapsAny,RangedData,RangesList-method

(findOverlaps-methods), 24

overlapsAny,Ranges,Ranges-method
(findOverlaps-methods), 24

overlapsAny,RangesList,IntervalForest-method
(findOverlaps-methods), 24

overlapsAny,RangesList,RangedData-method
(findOverlaps-methods), 24

overlapsAny,RangesList,RangesList-method
(findOverlaps-methods), 24

overlapsAny,Vector,missing-method
(findOverlaps-methods), 24

overlapsAny,Vector,Views-method
(findOverlaps-methods), 24

overlapsAny,Vector,ViewsList-method
(findOverlaps-methods), 24

overlapsAny,Views,Vector-method
(findOverlaps-methods), 24

overlapsAny,Views,Views-method
(findOverlaps-methods), 24

overlapsAny,ViewsList,Vector-method
(findOverlaps-methods), 24

overlapsAny,ViewsList,ViewsList-method
(findOverlaps-methods), 24

params (FilterRules-class), 20
params,FilterClosure-method

(FilterRules-class), 20
Partitioning (Grouping-class), 31
Partitioning-class (Grouping-class), 31
PartitioningByEnd, 80
PartitioningByEnd (Grouping-class), 31
PartitioningByEnd-class, 82
PartitioningByEnd-class

(Grouping-class), 31
PartitioningByWidth (Grouping-class), 31
PartitioningByWidth-class

(Grouping-class), 31
PartitioningMap (Grouping-class), 31
PartitioningMap-class (Grouping-class),

31
pgap (setops-methods), 102
pgap,Ranges,Ranges-method

(setops-methods), 102
pintersect (setops-methods), 102
pintersect,Ranges,Ranges-method

(setops-methods), 102
pmapCoords (mapCoords-methods), 62
pmax,IntegerList-method (AtomicList), 3
pmax,NumericList-method (AtomicList), 3
pmax,RleList-method (AtomicList), 3

128 INDEX

pmax.int,IntegerList-method
(AtomicList), 3

pmax.int,NumericList-method
(AtomicList), 3

pmax.int,RleList-method (AtomicList), 3
pmin,IntegerList-method (AtomicList), 3
pmin,NumericList-method (AtomicList), 3
pmin,RleList-method (AtomicList), 3
pmin.int,IntegerList-method

(AtomicList), 3
pmin.int,NumericList-method

(AtomicList), 3
pmin.int,RleList-method (AtomicList), 3
precede (nearest-methods), 68
precede,Ranges,RangesORmissing-method

(nearest-methods), 68
promoters (intra-range-methods), 47
promoters,CompressedIRangesList-method

(intra-range-methods), 47
promoters,IntervalForest-method

(intra-range-methods), 47
promoters,Ranges-method

(intra-range-methods), 47
promoters,RangesList-method

(intra-range-methods), 47
promoters,Views-method

(intra-range-methods), 47
psetdiff (setops-methods), 102
psetdiff,Ranges,Ranges-method

(setops-methods), 102
punion (setops-methods), 102
punion,Ranges,Ranges-method

(setops-methods), 102

quantile,AtomicList-method
(AtomicList), 3

queryHits,CompressedHitsList-method
(HitsList-class), 37

queryHits,HitsList-method
(HitsList-class), 37

queryLength,CompressedHitsList-method
(HitsList-class), 37

range (inter-range-methods), 38
range,CompressedIRangesList-method

(inter-range-methods), 38
range,IntervalForest-method

(inter-range-methods), 38

range,RangedData-method
(inter-range-methods), 38

range,Ranges-method
(inter-range-methods), 38

range,RangesList-method
(inter-range-methods), 38

rangeComparisonCodeToLetter
(Ranges-comparison), 84

RangedData, 14, 16, 24–27, 40, 41, 77, 78, 91,
92

RangedData (RangedData-class), 71
rangedData (rdapply), 90
rangedData,RDApplyParams-method

(rdapply), 90
RangedData-class, 71, 82
rangedData<- (rdapply), 90
rangedData<-,RDApplyParams-method

(rdapply), 90
RangedDataList, 75
RangedDataList (RangedDataList-class),

77
RangedDataList-class, 77
RangedSelection

(RangedSelection-class), 78
RangedSelection-class, 78
Ranges, 9, 10, 18, 19, 24–27, 29, 30, 33, 40,

41, 45, 47–49, 51, 53, 54, 66–70,
72–74, 84–88, 111

Ranges (Ranges-class), 79
ranges (Views-class), 111
ranges,CompressedRleList-method

(AtomicList), 3
ranges,Hits-method

(findOverlaps-methods), 24
ranges,HitsList-method

(HitsList-class), 37
ranges,NCList-method (NCList-class), 66
ranges,NCLists-method (NCList-class), 66
ranges,RangedData-method

(RangedData-class), 71
ranges,RangedSelection-method

(RangedSelection-class), 78
ranges,Rle-method

(Rle-class-leftovers), 97
ranges,RleList-method (AtomicList), 3
ranges,SimpleViewsList-method

(ViewsList-class), 113
ranges,Views-method (Views-class), 111

INDEX 129

Ranges-class, 30, 34, 54, 59, 79, 103
Ranges-comparison, 82, 84
ranges<- (Views-class), 111
ranges<-,RangedData-method

(RangedData-class), 71
ranges<-,RangedSelection-method

(RangedSelection-class), 78
ranges<-,Views-method (Views-class), 111
RangesList, 9, 10, 24–27, 29, 37, 38, 40, 41,

44, 45, 48, 49, 51, 61, 66–68, 72–74,
79, 80

RangesList (RangesList-class), 88
RangesList-class, 88
RangesORmissing (nearest-methods), 68
RangesORmissing-class

(nearest-methods), 68
rank, 86
rank,List-method (AtomicList), 3
RawList (AtomicList), 3
RawList-class (AtomicList), 3
rbind,DataFrameList-method

(DataFrameList-class), 14
rbind,FilterMatrix-method

(FilterMatrix-class), 20
rbind,RangedData-method

(RangedData-class), 71
rdapply, 22, 72, 75, 90
rdapply,RDApplyParams-method (rdapply),

90
RDApplyParams (rdapply), 90
RDApplyParams-class (rdapply), 90
read.agpMask (read.Mask), 93
read.gapMask (read.Mask), 93
read.liftMask (read.Mask), 93
read.Mask, 65, 93
read.rmMask (read.Mask), 93
read.trfMask (read.Mask), 93
reduce, 47
reduce (inter-range-methods), 38
reduce,CompressedIRangesList-method

(inter-range-methods), 38
reduce,IntervalForest-method

(inter-range-methods), 38
reduce,IRanges-method

(inter-range-methods), 38
reduce,RangedData-method

(inter-range-methods), 38
reduce,Ranges-method

(inter-range-methods), 38
reduce,RangesList-method

(inter-range-methods), 38
reduce,Views-method

(inter-range-methods), 38
reducerFun (rdapply), 90
reducerFun,RDApplyParams-method

(rdapply), 90
reducerFun<- (rdapply), 90
reducerFun<-,RDApplyParams-method

(rdapply), 90
reducerParams (rdapply), 90
reducerParams,RDApplyParams-method

(rdapply), 90
reducerParams<- (rdapply), 90
reducerParams<-,RDApplyParams-method

(rdapply), 90
reflect (intra-range-methods), 47
reflect,Ranges-method

(intra-range-methods), 47
relist, 19
relist,ANY,List-method (extractList), 17
relist,ANY,PartitioningByEnd-method

(extractList), 17
relist,Vector,list-method

(extractList), 17
relistToClass (extractList), 17
relistToClass,ANY-method (extractList),

17
relistToClass,data.frame-method

(extractList), 17
relistToClass,DataFrame-method

(extractList), 17
rep, 82
rep,Vector-method

(Vector-class-leftovers), 107
rep.int,Vector-method

(Vector-class-leftovers), 107
resize (intra-range-methods), 47
resize,CompressedIRangesList-method

(intra-range-methods), 47
resize,IntervalForest-method

(intra-range-methods), 47
resize,IntervalList-method

(intra-range-methods), 47
resize,Ranges-method

(intra-range-methods), 47
resize,RangesList-method

130 INDEX

(intra-range-methods), 47
restrict, 103
restrict (intra-range-methods), 47
restrict,CompressedIRangesList-method

(intra-range-methods), 47
restrict,IntervalForest-method

(intra-range-methods), 47
restrict,Ranges-method

(intra-range-methods), 47
restrict,RangesList-method

(intra-range-methods), 47
rev, 96, 97
rev,Vector-method

(Vector-class-leftovers), 107
revElements,CompressedList-method

(CompressedList-class), 6
reverse, 65, 96
reverse,character-method (reverse), 96
reverse,IRanges-method (reverse), 96
reverse,MaskCollection-method

(reverse), 96
reverse,NormalIRanges-method (reverse),

96
reverse,Views-method (reverse), 96
reverse-methods, 97
Rle, 9, 10, 18, 19, 74, 97, 98, 105, 110
Rle-class, 99
Rle-class-leftovers, 97
RleList, 7, 10, 74, 105, 110
RleList (AtomicList), 3
RleList,AtomicList,RleList-method

(AtomicList), 3
RleList-class (AtomicList), 3
RleViews, 99, 105, 109–111, 113
RleViews (RleViews-class), 98
RleViews-class, 98, 112
RleViewsList, 74, 105, 109, 110, 113
RleViewsList (RleViewsList-class), 99
RleViewsList-class, 99, 113
rownames,DataFrameList-method

(DataFrameList-class), 14
rownames,RangedData-method

(RangedData-class), 71
rownames<-,CompressedSplitDataFrameList-method

(DataFrameList-class), 14
rownames<-,RangedData-method

(RangedData-class), 71
rownames<-,SimpleDataFrameList-method

(DataFrameList-class), 14
runLength,CompressedRleList-method

(AtomicList), 3
runLength,RleList-method (AtomicList), 3
runmean,RleList-method (AtomicList), 3
runmed,CompressedIntegerList-method

(AtomicList), 3
runmed,NumericList-method (AtomicList),

3
runmed,RleList-method (AtomicList), 3
runmed,SimpleIntegerList-method

(AtomicList), 3
runq,RleList-method (AtomicList), 3
runsum,RleList-method (AtomicList), 3
runValue,CompressedRleList-method

(AtomicList), 3
runValue,RleList-method (AtomicList), 3
runValue<-,CompressedRleList-method

(AtomicList), 3
runValue<-,SimpleRleList-method

(AtomicList), 3
runwtsum,RleList-method (AtomicList), 3

S4groupGeneric, 4
sapply, 91, 92
score,RangedData-method

(RangedData-class), 71
score<-,RangedData-method

(RangedData-class), 71
sd,AtomicList-method (AtomicList), 3
selfmatch,Ranges-method

(Ranges-comparison), 84
seqapply, 100
seqby (seqapply), 100
seqsplit (seqapply), 100
setdiff,CompressedIRangesList,CompressedIRangesList-method

(setops-methods), 102
setdiff,Ranges,Ranges-method

(setops-methods), 102
setdiff,RangesList,RangesList-method

(setops-methods), 102
setops-methods, 41, 51, 54, 59, 61, 82, 87,

102
shift, 39
shift (intra-range-methods), 47
shift,CompressedIRangesList-method

(intra-range-methods), 47
shift,IntervalForest-method

(intra-range-methods), 47

INDEX 131

shift,Ranges-method
(intra-range-methods), 47

shift,RangesList-method
(intra-range-methods), 47

shift,Views-method
(intra-range-methods), 47

shiftApply (Vector-class-leftovers), 107
shiftApply,Vector,Vector-method

(Vector-class-leftovers), 107
shiftApply,vector,vector-method

(Vector-class-leftovers), 107
show,AtomicList-method (AtomicList), 3
show,Dups-method (Grouping-class), 31
show,FilterClosure-method

(FilterRules-class), 20
show,FilterMatrix-method

(FilterMatrix-class), 20
show,GappedRanges-method

(GappedRanges-class), 29
show,Grouping-method (Grouping-class),

31
show,IntervalForest-method

(IntervalForest-class), 44
show,MaskCollection-method

(MaskCollection-class), 63
show,PartitioningMap-method

(Grouping-class), 31
show,RangedData-method

(RangedData-class), 71
show,Ranges-method (Ranges-class), 79
show,RangesList-method

(RangesList-class), 88
show,RleList-method (AtomicList), 3
show,RleViews-method (RleViews-class),

98
show,SplitDataFrameList-method

(DataFrameList-class), 14
showAsCell,AtomicList-method

(AtomicList), 3
showAsCell,list-method

(Vector-class-leftovers), 107
showAsCell,Ranges-method

(Ranges-class), 79
showAsCell,RangesList-method

(RangesList-class), 88
SimpleAtomicList (AtomicList), 3
SimpleAtomicList-class (AtomicList), 3
SimpleCharacterList (AtomicList), 3

SimpleCharacterList-class (AtomicList),
3

SimpleComplexList (AtomicList), 3
SimpleComplexList-class (AtomicList), 3
SimpleDataFrameList-class

(DataFrameList-class), 14
SimpleFactorList (AtomicList), 3
SimpleFactorList-class (AtomicList), 3
SimpleIntegerList, 7
SimpleIntegerList (AtomicList), 3
SimpleIntegerList-class (AtomicList), 3
SimpleIRangesList, 4, 89
SimpleIRangesList (IRangesList-class),

60
SimpleIRangesList-class

(IRangesList-class), 60
SimpleList, 6–8
SimpleLogicalList, 7
SimpleLogicalList (AtomicList), 3
SimpleLogicalList-class (AtomicList), 3
SimpleNormalIRangesList, 4, 89
SimpleNormalIRangesList

(IRangesList-class), 60
SimpleNormalIRangesList-class

(IRangesList-class), 60
SimpleNumericList (AtomicList), 3
SimpleNumericList-class (AtomicList), 3
SimpleRangesList (RangesList-class), 88
SimpleRangesList-class

(RangesList-class), 88
SimpleRawList (AtomicList), 3
SimpleRawList-class (AtomicList), 3
SimpleRleList (AtomicList), 3
SimpleRleList-class (AtomicList), 3
SimpleRleViewsList-class

(RleViewsList-class), 99
SimpleSplitDataFrameList, 4
SimpleSplitDataFrameList-class

(DataFrameList-class), 14
SimpleViewsList (ViewsList-class), 113
SimpleViewsList-class

(ViewsList-class), 113
simplify (rdapply), 90
simplify,RDApplyParams-method

(rdapply), 90
simplify<- (rdapply), 90
simplify<-,RDApplyParams-method

(rdapply), 90

132 INDEX

slice, 10, 110
slice (slice-methods), 104
slice,ANY-method (slice-methods), 104
slice,Rle-method (slice-methods), 104
slice,RleList-method (slice-methods),

104
slice-methods, 104, 105
smoothEnds,CompressedIntegerList-method

(AtomicList), 3
smoothEnds,NumericList-method

(AtomicList), 3
smoothEnds,RleList-method (AtomicList),

3
smoothEnds,SimpleIntegerList-method

(AtomicList), 3
solveUserSEW, 41, 50, 51, 59
solveUserSEW (IRanges-constructor), 55
solveUserSEW0 (IRanges-constructor), 55
sort, 86
sort,List-method (AtomicList), 3
sort.List (AtomicList), 3
space (RangesList-class), 88
space,CompressedHitsList-method

(HitsList-class), 37
space,HitsList-method (HitsList-class),

37
space,RangedData-method

(RangedData-class), 71
space,RangesList-method

(RangesList-class), 88
split, 19, 65, 73
split,ANY,Vector-method (extractList),

17
split,list,Vector-method (extractList),

17
split,RangedData,ANY-method

(RangedData-class), 71
split,Vector,ANY-method (extractList),

17
split,Vector,Vector-method

(extractList), 17
split<-,Vector-method (seqapply), 100
splitAsList (extractList), 17
splitAsList,ANY,List (extractList), 17
splitAsList,ANY,Rle (extractList), 17
splitAsList,ANY,vectorORfactor

(extractList), 17
SplitDataFrameList, 72, 73

SplitDataFrameList
(DataFrameList-class), 14

SplitDataFrameList-class
(DataFrameList-class), 14

splitRanges (Rle-class-leftovers), 97
splitRanges,Rle-method

(Rle-class-leftovers), 97
splitRanges,vectorORfactor-method

(Rle-class-leftovers), 97
stack, 14, 61, 108
stack,DataFrameList-method

(DataFrameList-class), 14
stack,List-method

(List-class-leftovers), 61
stack,RangedDataList-method

(RangedDataList-class), 77
start,CompressedIRangesList-method

(IRangesList-class), 60
start,GappedRanges-method

(GappedRanges-class), 29
start,IntervalForest-method

(IntervalForest-class), 44
start,IntervalTree-method

(IntervalTree-class), 45
start,IRanges-method (IRanges-class), 53
start,NCList-method (NCList-class), 66
start,NCLists-method (NCList-class), 66
start,PartitioningByEnd-method

(Grouping-class), 31
start,PartitioningByWidth-method

(Grouping-class), 31
start,RangedData-method

(RangedData-class), 71
start,Ranges-method (Ranges-class), 79
start,RangesList-method

(RangesList-class), 88
start,SimpleViewsList-method

(ViewsList-class), 113
start,Views-method (Views-class), 111
start<- (Ranges-class), 79
start<-,IRanges-method (IRanges-class),

53
start<-,RangedData-method

(RangedData-class), 71
start<-,RangesList-method

(RangesList-class), 88
start<-,Views-method (Views-class), 111
sub,ANY,ANY,CompressedCharacterList-method

INDEX 133

(AtomicList), 3
sub,ANY,ANY,CompressedRleList-method

(AtomicList), 3
sub,ANY,ANY,SimpleCharacterList-method

(AtomicList), 3
sub,ANY,ANY,SimpleRleList-method

(AtomicList), 3
subject (Views-class), 111
subject,SimpleRleViewsList-method

(RleViewsList-class), 99
subject,Views-method (Views-class), 111
subjectHits,CompressedHitsList-method

(HitsList-class), 37
subjectHits,HitsList-method

(HitsList-class), 37
subjectLength,CompressedHitsList-method

(HitsList-class), 37
subset, 78
subset,Vector-method

(Vector-class-leftovers), 107
subsetByFilter (FilterRules-class), 20
subsetByFilter,ANY,FilterRules-method

(FilterRules-class), 20
subsetByOverlaps

(findOverlaps-methods), 24
subsetByOverlaps,RangedData,RangedData-method

(findOverlaps-methods), 24
subsetByOverlaps,RangedData,RangesList-method

(findOverlaps-methods), 24
subsetByOverlaps,RangesList,RangedData-method

(findOverlaps-methods), 24
subsetByOverlaps,Vector,Vector-method

(findOverlaps-methods), 24
subviews (Views-class), 111
subviews,Views-method (Views-class), 111
successiveIRanges, 34
successiveIRanges (IRanges-utils), 58
successiveViews, 59
successiveViews (Views-class), 111
sum,CompressedIntegerList-method

(AtomicList), 3
sum,CompressedLogicalList-method

(AtomicList), 3
sum,CompressedNumericList-method

(AtomicList), 3
sum,Views-method

(view-summarization-methods),
108

Summary,AtomicList-method (AtomicList),
3

summary,CompressedIRangesList-method
(IRangesList-class), 60

Summary,CompressedRleList-method
(AtomicList), 3

summary,FilterMatrix-method
(FilterMatrix-class), 20

summary,FilterRules-method
(FilterRules-class), 20

Summary,Views-method
(view-summarization-methods),
108

t,HitsList-method (HitsList-class), 37
table,AtomicList-method (AtomicList), 3
tapply, 108
tapply,ANY,Vector-method

(Vector-class-leftovers), 107
tapply,Vector,ANY-method

(Vector-class-leftovers), 107
tapply,Vector,Vector-method

(Vector-class-leftovers), 107
threebands (intra-range-methods), 47
threebands,IRanges-method

(intra-range-methods), 47
tile (Ranges-class), 79
tile,Ranges-method (Ranges-class), 79
togroup (Grouping-class), 31
togroup,ANY-method (Grouping-class), 31
togroup,H2LGrouping-method

(Grouping-class), 31
togrouplength (Grouping-class), 31
togrouplength,ManyToOneGrouping-method

(Grouping-class), 31
togrouprank (Grouping-class), 31
togrouprank,H2LGrouping-method

(Grouping-class), 31
tolower,CompressedCharacterList-method

(AtomicList), 3
tolower,CompressedRleList-method

(AtomicList), 3
tolower,SimpleCharacterList-method

(AtomicList), 3
tolower,SimpleRleList-method

(AtomicList), 3
toupper,CompressedCharacterList-method

(AtomicList), 3

134 INDEX

toupper,CompressedRleList-method
(AtomicList), 3

toupper,SimpleCharacterList-method
(AtomicList), 3

toupper,SimpleRleList-method
(AtomicList), 3

transform, 15
transform,SplitDataFrameList-method

(DataFrameList-class), 14
trim (Views-class), 111
trim,Views-method (Views-class), 111
tseqapply (seqapply), 100

union, 103
union,CompressedIRangesList,CompressedIRangesList-method

(setops-methods), 102
union,Ranges,Ranges-method

(setops-methods), 102
union,RangesList,RangesList-method

(setops-methods), 102
unique, 86
unique,CompressedList-method

(AtomicList), 3
unique,RleList-method (AtomicList), 3
unique.CompressedList (AtomicList), 3
unique.RleList (AtomicList), 3
universe (RangesList-class), 88
universe,RangedData-method

(RangedData-class), 71
universe,RangesList-method

(RangesList-class), 88
universe,ViewsList-method

(ViewsList-class), 113
universe<- (RangesList-class), 88
universe<-,RangedData-method

(RangedData-class), 71
universe<-,RangesList-method

(RangesList-class), 88
universe<-,ViewsList-method

(ViewsList-class), 113
unlist, 19
unlist,CompressedList-method

(CompressedList-class), 6
unlist,IRangesList-method

(IRangesList-class), 60
unlist,RangedDataList-method

(RangedDataList-class), 77
unlist,Ranges-method (Ranges-class), 79
unlist,SimpleFactorList (AtomicList), 3

unlist,SimpleNormalIRangesList-method
(IRangesList-class), 60

unlist,SimpleRleList (AtomicList), 3
unsplit, 19
unsplit,List-method (seqapply), 100
unstrsplit, 5
unstrsplit,CharacterList-method

(AtomicList), 3
update, 82
update,IRanges-method (IRanges-class),

53
update,Ranges-method (Ranges-class), 79
updateObject, 106
updateObject,CharacterList-method

(updateObject-methods), 106
updateObject,ComplexList-method

(updateObject-methods), 106
updateObject,FilterRules-method

(updateObject-methods), 106
updateObject,IntegerList-method

(updateObject-methods), 106
updateObject,IntervalTree-method

(updateObject-methods), 106
updateObject,IRanges-method

(updateObject-methods), 106
updateObject,IRangesList-method

(updateObject-methods), 106
updateObject,LogicalList-method

(updateObject-methods), 106
updateObject,MaskCollection-method

(updateObject-methods), 106
updateObject,NormalIRanges-method

(updateObject-methods), 106
updateObject,NumericList-method

(updateObject-methods), 106
updateObject,RangedData-method

(updateObject-methods), 106
updateObject,RangedDataList-method

(updateObject-methods), 106
updateObject,RangesList-method

(updateObject-methods), 106
updateObject,RawList-method

(updateObject-methods), 106
updateObject,RDApplyParams-method

(updateObject-methods), 106
updateObject,Rle-method

(updateObject-methods), 106
updateObject,RleList-method

INDEX 135

(updateObject-methods), 106
updateObject,RleViews-method

(updateObject-methods), 106
updateObject,SplitXDataFrameList-method

(updateObject-methods), 106
updateObject,XDataFrame-method

(updateObject-methods), 106
updateObject,XDataFrameList-method

(updateObject-methods), 106
updateObject-methods, 106

values,RangedData-method
(RangedData-class), 71

values<-,RangedData-method
(RangedData-class), 71

var,AtomicList,AtomicList-method
(AtomicList), 3

var,AtomicList,missing-method
(AtomicList), 3

Vector, 14, 17, 19, 21, 100, 107, 108, 111, 113
Vector-class, 112
Vector-class-leftovers, 107
Vector-comparison, 87
view-summarization-methods, 99, 100, 105,

108, 110
viewApply (view-summarization-methods),

108
viewApply,RleViews-method

(view-summarization-methods),
108

viewApply,RleViewsList-method
(view-summarization-methods),
108

viewApply,Views-method
(view-summarization-methods),
108

viewMaxs (view-summarization-methods),
108

viewMaxs,RleViews-method
(view-summarization-methods),
108

viewMaxs,RleViewsList-method
(view-summarization-methods),
108

viewMeans (view-summarization-methods),
108

viewMeans,RleViews-method
(view-summarization-methods),
108

viewMeans,RleViewsList-method
(view-summarization-methods),
108

viewMins (view-summarization-methods),
108

viewMins,RleViews-method
(view-summarization-methods),
108

viewMins,RleViewsList-method
(view-summarization-methods),
108

viewRangeMaxs
(view-summarization-methods),
108

viewRangeMaxs,RleViews-method
(view-summarization-methods),
108

viewRangeMaxs,RleViewsList-method
(view-summarization-methods),
108

viewRangeMins
(view-summarization-methods),
108

viewRangeMins,RleViews-method
(view-summarization-methods),
108

viewRangeMins,RleViewsList-method
(view-summarization-methods),
108

Views, 9, 10, 24–27, 40, 41, 48, 49, 51, 54, 96,
98, 108, 113

Views (Views-class), 111
Views,Rle-method (RleViews-class), 98
Views,RleList-method

(RleViewsList-class), 99
Views-class, 97, 99, 111
ViewsList, 24–27, 99, 108
ViewsList (ViewsList-class), 113
ViewsList-class, 99, 100, 113
viewSums (view-summarization-methods),

108
viewSums,RleViews-method

(view-summarization-methods),
108

viewSums,RleViewsList-method
(view-summarization-methods),
108

viewWhichMaxs

136 INDEX

(view-summarization-methods),
108

viewWhichMaxs,RleViews-method
(view-summarization-methods),
108

viewWhichMaxs,RleViewsList-method
(view-summarization-methods),
108

viewWhichMins
(view-summarization-methods),
108

viewWhichMins,RleViews-method
(view-summarization-methods),
108

viewWhichMins,RleViewsList-method
(view-summarization-methods),
108

vmembers (Grouping-class), 31
vmembers,H2LGrouping-method

(Grouping-class), 31
vmembers,ManyToOneGrouping-method

(Grouping-class), 31

which,CompressedLogicalList-method
(AtomicList), 3

which,CompressedRleList-method
(AtomicList), 3

which,SimpleLogicalList-method
(AtomicList), 3

which,SimpleRleList-method
(AtomicList), 3

which.max,CompressedRleList-method
(AtomicList), 3

which.max,Views-method
(view-summarization-methods),
108

which.min, 110
which.min,CompressedRleList-method

(AtomicList), 3
which.min,Views-method

(view-summarization-methods),
108

whichAsIRanges (IRanges-utils), 58
whichFirstNotNormal (Ranges-class), 79
whichFirstNotNormal,Ranges-method

(Ranges-class), 79
whichFirstNotNormal,RangesList-method

(RangesList-class), 88
width (Ranges-class), 79

width,CompressedIRangesList-method
(IRangesList-class), 60

width,IntervalForest-method
(IntervalForest-class), 44

width,IRanges-method (IRanges-class), 53
width,MaskCollection-method

(MaskCollection-class), 63
width,NCList-method (NCList-class), 66
width,NCLists-method (NCList-class), 66
width,PartitioningByEnd-method

(Grouping-class), 31
width,PartitioningByWidth-method

(Grouping-class), 31
width,RangedData-method

(RangedData-class), 71
width,Ranges-method (Ranges-class), 79
width,RangesList-method

(RangesList-class), 88
width,SimpleViewsList-method

(ViewsList-class), 113
width,Views-method (Views-class), 111
width<- (Ranges-class), 79
width<-,IRanges-method (IRanges-class),

53
width<-,RangedData-method

(RangedData-class), 71
width<-,RangesList-method

(RangesList-class), 88
width<-,Views-method (Views-class), 111
window,Rle-method

(Rle-class-leftovers), 97
window.Rle (Rle-class-leftovers), 97
window<-,factor-method

(Vector-class-leftovers), 107
window<-,Vector-method

(Vector-class-leftovers), 107
window<-,vector-method

(Vector-class-leftovers), 107
window<-.factor

(Vector-class-leftovers), 107
window<-.Vector

(Vector-class-leftovers), 107
window<-.vector

(Vector-class-leftovers), 107
with,Vector-method

(Vector-class-leftovers), 107
within,RangedData-method

(RangedData-class), 71

INDEX 137

XDoubleViews-class, 112
XIntegerViews, 111
XIntegerViews-class, 112
XString, 63, 111
XStringViews, 111
XStringViews-class, 112
XVector, 112
XVectorList, 51

	AtomicList
	CompressedList-class
	coverage-methods
	DataFrame-utils
	DataFrameList-class
	expand
	extractList
	FilterMatrix-class
	FilterRules-class
	findOverlaps-methods
	GappedRanges-class
	Grouping-class
	Hits-class-leftovers
	HitsList-class
	inter-range-methods
	IntervalForest-class
	IntervalTree-class
	intra-range-methods
	IRanges-class
	IRanges-constructor
	IRanges-utils
	IRangesList-class
	List-class-leftovers
	mapCoords-methods
	MaskCollection-class
	multisplit
	NCList-class
	nearest-methods
	RangedData-class
	RangedDataList-class
	RangedSelection-class
	Ranges-class
	Ranges-comparison
	RangesList-class
	rdapply
	read.Mask
	reverse
	Rle-class-leftovers
	RleViews-class
	RleViewsList-class
	seqapply
	setops-methods
	slice-methods
	updateObject-methods
	Vector-class-leftovers
	view-summarization-methods
	Views-class
	ViewsList-class
	Index

