Package 'BiRewire'

October 8, 2015

Version 2.2.3

Date 2015-07-09
Title High-performing routines for the randomization of a bipartite graph (or a binary event matrix) and directed signed graph preserving degree distribution (or marginal totals).
Maintainer Andrea Gobbi gobbi.andrea@mail.com
Description Fast functions for bipartite network rewiring through N consecutive switching steps (See References) and for the computation of the minimal number of switching steps to be performed in order to maximise the dissimilarity with respect to the original network. Includes function for the analysis of the introduced randomness across the switching and several other routines to analyse the resulting networks and their natural projections.
Extension to undirected networks (not bipartite) is also provided.
Starting from version 1.9.7 a more precise bound (especially for small network) has been implemented. Starting from version 2.2.0 the analysis routine is more useful and a visual montioring of the underlying Markov Chain has been implemented.
License GPL-3
Depends igraph, slam, tsne
Suggests RUnit, BiocGenerics
Author Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio
[cbt], Giuseppe Jurman [cbt], Julio Saez-Rodriguez [cbt] .
URL http://www.ebi.ac.uk/~iorio/BiRewire
biocViews Network
NeedsCompilation yes

R topics documented:

BiRewire-package . 2
birewire.analysis.bipartite . 3
birewire.analysis.undirected . 5
birewire.bipartite.from.incidence 7
birewire.rewire.bipartite 8
birewire.rewire.bipartite.and.projections 10
birewire.rewire.undirected 12
birewire.sampler.bipartite 13
birewire.sampler.undirected 15
birewire.similarity 16
birewire.visual.monitoring.bipartite 17
birewire.visual.monitoring.undirected 19
BRCA_binary_matrix 21
Index 22
BiRewire-package The BiRewire package

Description

R package for computationally-efficient rewiring of bipartite graphs (or randomisation of 0-1 tables with prescribed marginal totals) and undirected. The package provides useful functions for the analysis and the randomisation of large biological datasets that can be encoded as 0-1 tables, hence modeled as bipartite graphs by considering a $0-1$ table as an incidence matrix. Large collections of such randomised tables can be used to approximate null models, preserving event-rates both across rows and columns, for statistical significance tests of combinatorial properties of the original dataset. The package provides an interface to a sampler routine useful for generating correctly such collections. Moreover a visual monitoring for the Markov Chain underlying the swithicng algorithm has been implemented.

Details

Summary:

Package:	BiRewire
Version:	2.2 .3
Date: $2015-07-07$	
Require: slam, igraph,tsne, R>=2.10	
URL: http://www.ebi.ac.uk/~iorio/BiRewire	
License:	GPL-3

Author(s)

Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio [cbt], Giuseppe Jurman [cbt].

Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028 Csardi, G. and Nepusz, T (2006)

Van der Maaten, L.J.P. and Hinton, G.E., Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008 The igraph software package for complex network research, InterJournal, Complex Systems http://igraph.sf.net

```
birewire.analysis.bipartite
```

Analysis of Jaccard similarity trends across switching steps.

Description

This function performs a sequence of max.iter switching steps on the input bipartite graph g and compute the Jaccard similarity between g (the initial network) and its rewired version each step switching steps. This procedure is pefromed n.networks times and a simple explorative plot, with mean and CI, is visualized if display is set to true.

Usage

birewire.analysis.bipartite(incidence, step=10, max.iter="n", accuracy=0.00005, verbose=TRUE,MAXITER_MUL=10, exact=FALSE, n.networks=50, display=TRUE)

Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph bipartite graph using the get. incidence function);
step $\quad 10$ (default): the interval (in terms of switching steps) at which the Jaccard index between g and the its current rewired version is computed;
max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e / 2(1-d) \ln ((e-d e) / \delta)$ if exact is FALSE, $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);

accuracy	0.00005 (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N-th step and its analytically derived fixed point in terms of fracion of common edges;
verbose	TRUE (default). When TRUE a progression bar is printed during computation; MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL* max.iter iterations;
exact	FALSE (default). If TRUE the program performs max.iter swithcing steps, oth- erwise the program will count also the not-performed swithcing steps;
n.networks	50 (default), the number of independent rewiring process starting from the same inital graph from which the mean value and the CI is computed.
display	TRUE (default). If TRUE two explorative plots are displayed summarizing the trend of the Jaccard index in terms of mean and confidence interval.

Details

This function performs max.iter switching steps (see references). In particular, at each step two edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d) (where a and c belong to the first class of nodes whereas b and d belong to the second one), with $a \neq c$ and $b \neq d$.
If the (a, d) and (c, b) edges are not already present in the current current version of g then (a, d) and (c, b) replace (a, b) and (c, d).

At each step number of switching steps the function computes the Jaccard index between the original graph g and its current version.
This procedure is perfomed n.networks times and if display is set to TRUE, two explorative plots showing the mean value of the Jaccad Index over the SS and its CI are displayed.

Value

A list containing a data.frame data collecting all the Jacard index computed (each row is a run of the SA), and the analytically derived lower bound N of switching steps to be performed by the switching algorithm in order to provide the revired version of g with the maximal level of achievable randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(BiRewire)
g <-graph.bipartite( rep(0:1,length=10), c(1:10))
##get the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
## set parameters
step=1
max=100*length(E(g))
## perform two different analysis using two different maximal number of switching steps
scores<-birewire.analysis.bipartite(m, step, max, n.networks=10)
scores2<-birewire.analysis.bipartite(m, step, "n",n.networks=10)
```


Description

This function performs a sequence of maxiter switching steps on the input undirected graph g and compute the Jaccard similarity between g (the initial network) and its rewired version each step switching steps. This procedure is pefromed n.networks times and a simple explorative plot, with mean and CI, is visualized if display is set to true.

Usage

birewire.analysis.undirected(adjacency, step=10, max.iter="n", accuracy=0.00005, verbose=TRUE, MAXITER_MUL=10, exact=FALSE, n. networks=50, display=TRUE)

Arguments

adjacency Incidence matrix of the initial bipartite graph g (can be extracted from an igraph undirected graph using the get. adjacency function);
step $\quad 10$ (default): the interval (in terms of switching steps) at which the Jaccard index between g and the its current rewired version is computed;

max.iter	"n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to "n" then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e /\left(2 d^{3}-d d^{2}+2 d+2\right) \ln ((e-d e) / \delta)$ if exact is FALSE, $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ otherwise, where e is the number of edges of g and d its edge density . This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References); 0.00005 (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N-th step and its analytically derived fixed point in terms of fracion of common edges;
accuracy	TRUE (default). When TRUE a progression bar is printed during computation; verbose (default). If exact==TRUE in order to prevent a possible infinite loop the
MAXITER_MUL	program stops anyway after MAXITER_MUL*max.iter iterations;
exact	FALSE (default). If TRUE the program performs max.iter swithcing steps, oth- erwise the program will count also the not-performed swithcing steps;
n. networks	50 (default), the number of independent rewiring process starting from the same inital graph from which the mean value and the CI is computed.
display	TRUE (default). If TRUE two explorative plots are displayed summarizing the trend of the Jaccard index in terms of mean and confidence interval.

Details

This function performs maxiter switching steps (see references). In particular, at each step two edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d), with $a \neq c, b \neq d, a \neq d, b \neq c$.
If the (a, d) and (c, b) (or (a, d) and (b, d)) edges are not already present in the current version of g then (a, d) and (c, b) replace (a, b) and (c, d) (or (a, b) and (c, d) replace (a, c) and (b, d)). If both of the configuarations are allowed, then one of them is randomly selected.

At each step number of switching steps the function computes the Jaccard index between the original graph g and its current version.
This procedure is perfomed n.networks times and if display is set to TRUE, two explorative plots showing the mean value of the Jaccad Index over the SS and its CI are displayed.

Value

A list containing a data.frame data collecting all the Jacard index computed (each row is a run of the SA), and the analytically derived lower bound N of switching steps to be performed by the switching algorithm in order to provide the revired version of g with the maximal level of achievable randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching Algorithm for undirected graphs.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##get the incidence matrix of g
    m<-as.matrix(get.adjacency(graph=g,sparse=FALSE))
## set parameters
step=1000
max=100*length(E(g))
## perform two different analysis using two different numbers of switching steps
scores<-birewire.analysis.undirected(m, step,max,n.networks=10)
scores2<-birewire.analysis.undirected(m, step, "n", n.networks=10)
```

birewire.bipartite.from.incidence
Converts an incidence matrix into a bipartite graph.

Description

This function creates an igraph bipartite graph from an incidence matrix.

Usage

birewire.bipartite.from.incidence(matrix, directed=FALSE)

Arguments

matrix incidence matrix: an (n-by-m) binary matrix where rows correspond to vertices in the frist class while columns correspond to vertices in the second one;
directed Logical, if TRUE a directed graph is created.

Details

The function calls graph.incidence of package igraph. See igraph documentation for more details.

Value

Bipartite igraph graph.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Csardi, G. and Nepusz, T (2006) The igraph software package for complex network research, InterJournal, Complex Systems url http://igraph.sf.net

Examples

```
library(igraph)
library(BiRewire)
g <- graph.bipartite( rep(0:1,length=10), c(1:10))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
##rewire the current graph
m2=birewire.rewire.bipartite(m,100)
#create the rewired bipartite graph
g2<-birewire.bipartite.from.incidence(m2,TRUE)
```

```
birewire.rewire.bipartite
```

 Efficient rewiring of bipartite graphs

Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial bipartite graph or its incidence matrix.

Usage

birewire.rewire.bipartite(incidence, max.iter="n", accuracy=0.00005, verbose=TRUE, MAXITER_MUL=10, exact=FALSE)

Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph bipartite graph using the get. incidence) function; or the entire bipartite igraph graph
max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e / 2(1-d) \ln ((e-d e) / \delta)$ if exact is FALSE, $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;

Details

Main function of the package. It performs at most max.iter switching steps producing a rewired version of an initial bipartite graph.

Value

Incidence matrix of the rewired graphn or the igraph corresponding object depending on the input type.

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014

30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <-graph.bipartite( rep(0:1,length=10), c(1:10))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
##rewiring
m2=birewire.rewire.bipartite(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-birewire.bipartite.from.incidence(m2,directed=TRUE)
```

birewire.rewire.bipartite.and.projections
Analysis and rewiring function processing a bipartite graphs and its two projections

Description

This function performs the same analysis of birewire.analysis.bipartite but additionally it provides in output a rewired version of the two networks resulting from the natural projections of the initial graph, together with the corresponding Jaccard index trends.

Usage

birewire.rewire.bipartite.and.projections(graph,step=10,max.iter="n", accuracy=0.00005, verbose=TRUE,MAXITER_MUL=10)

Arguments

graph A bipartite graph g;
max.iter "n" (default) the number of successful switching steps to be performed. If equal to " n " then this number is considered equal to the analytically derived lower bound $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ presented in Gobbi et al. (see References);

```
step \(\quad 10\) (default): the interval (in terms of switching steps) at which the Jaccard index
    between \(g\) and the its current rewired version is computed;
accuracy \(\quad 0.00005\) (default) is the desired level of accuracy reflecting the average distance
        between the Jaccard index at the N -th step and its analytically derived fixed point
        in terms of fracion of common edges;
verbose TRUE (default) boolean value. If TRUE print a processing bar during the rewiring
        algorithm.
MAXITER_MUL 10 (default). Since \(N\) indicates the number of successful switching steps, in or-
        der to prevent a possible infinite loop the program stops anyway after MAX-
        ITER_MUL*max.iter iterations ;
```


Details

See birewire.analysis.bipartite for details.

Value

A list containing the three sequences of Jaccard index values (similarity_scores, similarity_scores.proj1, similarity_scores.proj2) for the three resulting graphs respectively (rewired, rewired.proj1, rewired.proj2). The first one is the rewired version of the initial graph g, while the second and the third one are rewired versions of its natural projections.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100, seq(1,100,13),
seq(1,100,17),\operatorname{seq}(1,100,19),\operatorname{seq}(1,100,23),100
)))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
## rewires g and its projections
result=birewire.rewire.bipartite.and.projections(g,step=10,max.iter="n", accuracy=0.00005)
```

```
birewire.rewire.undirected
```

Efficient rewiring of undirected graphs

Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial undirected graph or its adjacency matrix.

Usage

birewire.rewire.undirected(adjacency, max.iter="n", accuracy=0.00005, verbose=TRUE,MAXITER_MUL=10,exa

Arguments

adjacency An igraph undirected graph g or its adjacency matrix (can be extracted from g using get. adjacency (g));
max.iter $\quad \mathrm{n} "$ (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e /\left(2 d^{3}-6 d^{2}+2 d+2\right) \ln (e-d e)$ if exact is FALSE, $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default) boolean value. If TRUE print a processing bar during the rewiring algorithm.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;

Details

Performs at most max.iter number of rewiring steps producing a rewired version of an initial undirected graph.

Value

Adjacency matrix of the rewired graph or the relative igraph object depending on the input type.

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching Algorithm for undirected graphs.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##gets the incidence matrix of g
    m<-as.matrix(get.adjacency(graph=g,sparse=FALSE))
## sets parameters
step=1000
max=100*length(E(g))
##rewiring
m2=birewire.rewire.undirected(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-graph.adjacency(m2,mode="undirected")
```

birewire.sampler.bipartite
Efficient generation of a null model for a given bipartite graph

Description

The routine samples correctly from the null model of a given bipartite graph creating a set of randomized version of the initial bipartite graph.

Usage

birewire.sampler.bipartite(incidence, K, path, max.iter="n", accuracy=0.00005,
verbose=TRUE,MAXITER_MUL=10, exact=FALSE, write.sparse=TRUE)

Arguments

incidence Incidence matrix of the initial bipartite graph;
K The number of networks that has to be generated;
path The directory in which the routine stores the outputs;
max.iter $\quad \mathrm{n} "$ (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e / 2(1-d) \ln ((e-d e) / \delta)$ if exact is FALSE, $N=e(1-d) / 2 \ln ((e-d e) / \delta)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N-th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;
write.sparse TRUE (default). If FALSE the table is written as an R data.frame (long time and more space needed)

Details

The routine creates, starting from the given path, different subfolders in order to have maximum 1000 files for folder . Moreover the incidence matrices are saved using write_stm_CLUTO (sparse matrices) that can be loaded using read_stm_CLUTO. The set is generated calling birewire.rewire.bipartite on the last generated graph starting from the input graph.

Author(s)

Andrea Gobbi: gobbi.andrea@mail.com Special thanks to: Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

```
birewire.sampler.undirected
```

Efficient generation of a null model for a given undirected graph

Description

The routine samples correctly from the null model of a given undirected graph creating a set of randomized version of the initial undirected graph.

Usage

birewire.sampler.undirected(adjacency,K, path,max.iter="n", accuracy=0.00005, verbose=TRUE,MAXITER_MUL=10, exact=FALSE, write.sparse=TRUE)

Arguments

adjacency Adjacency matrix of the initial undirected graph;
K
The number of networks that has to be generated;
path The directory in which the routine stores the outputs;
max.iter "n" (default) see birewire. rewire. undirected for references
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;
write.sparse TRUE (default). If FALSE the table is written as an R data.frame (long time and more space needed)

Details

The routine creates, starting from the given path, different subfolders in order to have maximum 1000 files for folder. Moreover the incidence matrices are saved using write_stm_CLUTO (sparse matrices) that can be loaded using read_stm_CLUTO. The set is generated calling birewire.rewire.undirected on the last generated graph starting from the input graph.

Author(s)

Andrea Gobbi: gobbi.andrea@mail.com
Special thanks to: Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching Algorithm for undirected graphs.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028
birewire.similarity Compute the Jaccard similarity index between two binary matrices with the same number of non-null entries and the sam row- and column-wise sums.

Description

Compute the Jaccard similarity index between two binary matrices with the same number of nonnull entries and the sam row- and column-wise sums. The function accept also two igraph objects.

Usage

birewire.similarity (m1, m2)

Arguments

m1 First matrix or graph;
m2 Second matrix or graph.

Details

The Jaccard index between two sets M and N is defined as:
$|M \cup N| /|M \cap N|$
With M and N binary matrices, the Jaccard index is computed as:

$$
\frac{\sum N_{i, j} \wedge M_{i, j}}{\sum N_{i, j} \vee M_{i, j}}
$$

The Jaccard index ranges between 0 and 1.

Value

Returns the Jaccard similarity index between the objects.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com

Examples

```
library(igraph)
library(BiRewire)
g <- graph.bipartite( rep(0:1,length=10), c(1:10))
g2=birewire.rewire.bipartite(g)
birewire.similarity(get.incidence(g,sparse=FALSE),get.incidence(g2, sparse=FALSE))
birewire.similarity(g,g2)
```

birewire.visual.monitoring.bipartite
Visual monitoring of the Markov chain underlying the SA for directed
graphs.

Description

This function generates a cascade-sampling from the model at different switching steps given in sequence. For each step the routine computes the pairwise Jaccard distance (1-JI) among the samples and perfroms, on the resulting matix, a dimentional scaling reduction (using tsne). If display is true, the relative plot is displayed.

Usage

birewire.visual.monitoring.bipartite(data, accuracy=0.00005, verbose=FALSE, MAXITER_MUL=10, exact=FALSE, n. networks=100, perplexity=15, sequence $=c(1,5,100, " n ")$, ncol=2, nrow=length(sequence)/ncol, display=TRUE)

Arguments

data The initial bipartite graph, either an incidence matrix or an igraph bipartite graph object;
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N-th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;
n.networks 100 (default): the number of network generated for each step defined in $s e$ quence;
perplexity $\quad 15$ (default): the value of perplexity passed to the function tsne;
sequence $\quad c(1,5,100, " n ")($ default $)$ the sequence of step for wich generating a sampler (seebirewire. rewire. sample
ncol 2 (default). The number of column in the plot;
nrow length(sequence)/ncol (default). The number of row in the plot;
display TRUE (default). If TRUE the result is displayed.

Details

For each value p in sequence (it that can also contain the special character " n ", see birewire. rewire. bipartite), the routine generates n.networks sampled each p SS from the SA initialized with the given data. Pariwise distance are computed using the Jaccard distance and the resulting matrix is the input for the dimensional scaling performed by the function tsne. An explorative plot is displayed if display is set to TRUE.

Value

A list containing the list containing the distance matrices dist and the list containing the tsne results tsne.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028
Van der Maaten, L.J.P. and Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008

Examples

```
library(BiRewire)
g <- graph.bipartite( rep(0:1,length=100), c(1:100))
birewire.visual.monitoring.bipartite(g,display=FALSE,n.networks=10)
```

birewire.visual.monitoring.undirected
Visual monitoring of the Markov chain underlying the SA for undirected graphs.

Description

This function generates a cascade-sampling from the model at different switching steps given in sequence. For each step the routine computes the pairwise Jaccard distance (1-JI) among the samples and perfroms, on the resulting matix, a dimentional scaling reduction (using tsne). If display is true, the relative plot is displayed.

Usage

birewire.visual.monitoring.undirected(data, accuracy=0.00005, verbose=FALSE, MAXITER_MUL=10, exact=FALSE, n.networks=100, perplexity=15, sequence $=c(1,5,100, " n ")$, ncol=2, nrow=length(sequence)/ncol, display=TRUE)

Arguments

data The initial undirected graph, either an adjacency matrix or an igraph undirected graph object;
accuracy $\quad 0.00005$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point in terms of fracion of common edges;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter swithcing steps, otherwise the program will count also the not-performed swithcing steps;
n. networks 100 (default): the number of network generated for each step defined in sequence ;
perplexity $\quad 15$ (default): the value of perplexity passed to the function tsne;
sequence
ncol 2 (default). The number of column in the plot;
nrow length(sequence)/ncol (default). The number of row in the plot;
display TRUE (default). If TRUE the result of tsne is displayed.

Details

For each value p in sequence (it that can also contain the special character " n ", see birewire. rewire. bipartite), the routine generates n.networks sampled each p SS from the SA initialized with the given data. Pariwise distance are computed using the Jaccard distance and the resulting matrix is the input for the dimensional scaling performed by the function tsne. An explorative plot is displayed if display is set to TRUE.

Value

A list containing the list containing the distance matrices dist and the list containing the tsne results tsne.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Van der Maaten, L.J.P. and Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008

Examples

library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
birewire.visual.monitoring.undirected(g,display=FALSE, n.networks=10)

```
BRCA_binary_matrix TCGA Brest Cancer data
```


Description

Breast cancer samples and their respective mutations downloaded from the Cancer Cancer Genome Atlas (TCGA), used in Gobbi et al.. Germline mutations were filtered out of the list of reported mutations; synonymous mutations and mutations identified as benign and tolerated were also removed from the dataset. The bipartite graph resulting when considering this matrix as an incidence matrix has $n_{r}=757, n_{c}=9757, e=19758$ for an edge density equal to 0.27%.

Usage

data(BRCA_binary_matrix)

Source

http://tcga.cancer.gov/dataportal/

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov, L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014 30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Index

```
*Topic bipartite graph, incidece
    matrix
    birewire.bipartite.from.incidence,
    7
*Topic bipartite graph, projection,
    rewire
birewire.sampler.bipartite, 13
birewire.sampler.undirected, 15
birewire.similarity,16
birewire.visual.monitoring.bipartite,
        17
    birewire.visual.monitoring.undirected,
    birewire.rewire.bipartite.and.projections,
        10
BRCA_binary_matrix, 21
*Topic bipartite graph, rewire
    birewire.rewire.bipartite, }
*Topic datasets
    BRCA_binary_matrix, 21
*Topic directed graph, rewire,
    pathway, signaling
    birewire.sampler.bipartite, 13
*Topic package
    BiRewire-package, 2
*Topic rewire, bipartite graph
    birewire.analysis.bipartite, 3
    birewire.visual.monitoring.bipartite,
    17
    birewire.visual.monitoring.undirected,
    19
*Topic rewire, undirected graph
    birewire.analysis.undirected, 5
*Topic similarity,jaccard
    birewire.similarity,16
*Topic undirected graph, rewire
    birewire.rewire.undirected, 12
    birewire.sampler.undirected, 15
BiRewire (BiRewire-package), 2
BiRewire-package, 2
birewire.analysis.bipartite, 3, 10, 11
birewire.analysis.undirected,5
birewire.bipartite.from.incidence,7
birewire.rewire.bipartite, 8
birewire.rewire.bipartite.and.projections,
    10
birewire.rewire.undirected,12
```

