
Event-level prediction and quantification of transcript isoforms from

RNA-seq data

Leonard Goldstein

Department of Bioinformatics and Computational Biology, Genentech Inc.

November 18, 2014

1 Background

RNA-seq data are informative for the analysis of known and novel transcript isoforms. While the short length of RNA-seq
reads limits the ability to predict and quantify full-length transcripts, short read data are well suited for the analysis of
individual alternative transcript events (e.g. inclusion or skipping of a cassette exon). Available event-centric methods
typically rely on annotated transcripts and only consider a subset of all possible events. We developed a novel approach
for the identification and quantification of alternative transcript events from RNA-seq data, implemented in the SGSeq
package.

2 Overview

SGSeq predicts splice junctions and exons from genomic RNA-seq read alignments in BAM format. The discrete transcript
features are assembled into a genome-wide splice graph [1]. Splice junctions and disjoint exon bins form the edges of the
graph, while nodes correspond to transcript starts and ends, and splice donor and acceptor sites. Alternative transcript
events are regions with two or more transcript variants. In the context of the splice graph, they are defined by a start
and an end node connected by two or more alternative paths and no intervening nodes with all paths intersecting. SGSeq
identifies alternative transcript events recursively from the splice graph, and quantifies transcript variants locally, based
on counts of reads spanning event boundaries.

3 Preliminaries

This vignette illustrates an analysis of paired-end RNA-seq data obtained from four colorectal tumors and four normal
colorectal samples, which are part of a data set published in [2]. For the purpose of this vignette, we created BAM files
including alignments overlapping a single gene of interest (FBXO31).

library(SGSeq)

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

In the following, we use a data.frame si with sample information, and a GRanges object gr with genomic coordinates
of the FBXO31 gene.

The data.frame with sample information contains alignment information, including paired-end status, median read length,
median insert size and the total number of alignments. These were obtained from the original BAM files using function
getBamInfo. We set the correct BAM file paths in the sample information.

1

Event-level prediction and quantification of transcript isoforms from RNA-seq data 2

dir <- system.file("extdata", package = "SGSeq")

si$file_bam <- file.path(dir, "bams", si$file_bam)

We obtain transcript annotation from the UCSC knownGene table, available as a Bioconductor annotation package
TxDb.Hsapiens.UCSC.hg19.knownGene. We retain transcripts on chromosome 16, where the FBXO31 gene is located,
and change chromosome names in the annotation to match chromosome names in the BAM files.

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

txdb <- keepSeqlevels(txdb, "chr16")

seqlevelsStyle(txdb) <- "NCBI"

SGSeq makes extensive use of the Bioconductor infrastructure for genomic ranges [3]. To store genomic coordinates for
both exons and splice junctions, we created a new class TxFeatures, which extends the GRanges class with additional
columns. Column type takes values in J (splice junction), I (internal exon), F (first/5′ terminal exon), L (last/3′ terminal
exon) and U (unspliced).

In addition to TxFeatures, we designed the SGFeatures class to store splice graph features. Similar to TxFeatures, the
SGFeatures class extends the GRanges class with additional columns. Column type in an SGFeatures object takes values
in J (splice junction), E (disjoint exon bin), D (splice donor) and A (splice acceptor).

For both TxFeatures and SGFeatures, additional column data can be accessed using functions that are named after the
columns they access (e.g. use function type to obtain feature type). Transcript features or splice graph features can be
exported to BED files using function exportFeatures.

To work with annotated transcripts in the SGSeq framework, we extract transcript features from the TxDb object and
store them as a TxFeatures object. We only retain features overlapping the FBXO31 gene locus.

txf_annotated <- convertToTxFeatures(txdb)

txf_annotated <- txf_annotated[txf_annotated %over% gr]

If transcript annotation is not available as a TxDb object, function convertToTxFeatures can construct TxFeatures
from a GRangesList of exons grouped by transcript (which can be obtained from other formats such as GFF/GTF).

4 Analysis based on annotated transcript features

Initially, we perform an analysis for annotated transcript features. The following example converts the transcript features
into splice graph features and obtains compatible counts for each feature and each sample.

sgfc <- analyzeFeatures(si, features = txf_annotated)

Process features...

Obtain counts...

analyzeFeatures returns an SGFeatureCounts object, which extends the SummarizedExperiment class from the Ge-
nomicRanges package. SGFeatureCounts contains sample information as colData, splice graph features as rowData

and assays counts and FPKM, which store compatible counts and FPKMs for each splice graph feature and sample,
respectively. Accessor functions colData, rowData, counts and FPKM can be used to access the data.

Compatible FPKMs for splice graph features can be visualized with function plotFeatures.

plotFeatures(sgfc, geneID = 1)

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Event-level prediction and quantification of transcript isoforms from RNA-seq data 3

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

J1

J2
J3

J4 J5 J6 J7 J8 J9 J10

J1 J2 J3 J4 J5 J6 J7 J8 J9 J1
0

N2

T2

T4

T1

N1

T3

N3

N4

5 Analysis based on predicted transcript features

Instead of relying on existing annotation, we can predict transcript features from BAM files directly.

sgfc <- analyzeFeatures(si, which = gr)

Predict features...

Process features...

Obtain counts...

For interpretability, we annotate predicted features with respect to known transcript features.

sgfc <- annotate(sgfc, txf_annotated)

The predicted splice graph features and compatible FPKMs can be visualized as previously. By default, splice graph
features with missing annotation are highlighted in red.

plotFeatures(sgfc, geneID = 1)

Event-level prediction and quantification of transcript isoforms from RNA-seq data 4

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

J1 J2

J3

J4 J5 J6 J7 J8 J9 J10

J1 J2 J3 J4 J5 J6 J7 J8 J9 J1
0

N2

N3

N4

T2

T4

T1

N1

T3

Note that, in contrast to the previous figure, the predicted gene model does not include parts of the splice graph that
are not expressed. Also, an unannotated exon was discovered from the RNA-seq data, which is expressed in three of the
four normal colorectal samples.

6 Analysis of transcript variants

We can focus our analysis on alternative transcript events. The following example identifies transcript variants from the
splice graph and obtains representative counts for each transcript variant. Estimates for variant frequencies are obtained
based on representative counts.

txvc <- analyzeVariants(sgfc)

Find segments...

Find variants...

Annotate variants...

analyzeVariants returns a TxVariantCounts object. Similar to SGFeatureCounts, TxVariantCounts extends the Sum-
marizedExperiment class from the GenomicRanges package. TxVariantCounts contains sample information as colData

and transcript variants as rowData. Assay variantFreq stores frequency estimates for each transcript variant and
sample. Accessor functions colData, rowData and variantFreq can be used to access the data.

Each transcript variant consists of one or more splice graph features. Information on transcript variants is stored as
elementMetadata (or mcols) in the TxVariants object and can be accessed as follows.

mcols(txvc)

DataFrame with 2 rows and 16 columns

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Event-level prediction and quantification of transcript isoforms from RNA-seq data 5

from to type featureID segmentID closed3p closed5p

<character> <character> <character> <character> <character> <logical> <logical>

1 D:16:87393901:- A:16:87380856:- J 28 4 TRUE TRUE

2 D:16:87393901:- A:16:87380856:- JEJ 32,30,27 2 TRUE TRUE

geneID eventID variantID featureID5p featureID3p

<integer> <integer> <integer> <IntegerList> <IntegerList>

1 1 1 1 28 28

2 1 1 2 32 27

txName geneName variantType variantName

<CharacterList> <CharacterList> <CharacterList> <character>

1 uc002fjv.3,uc002fjw.3,uc010vot.2 79791 SE:S 79791_1_1/2_SE

2 79791 SE:I 79791_1_2/2_SE

Transcript variants and estimates of variant frequencies can be visualized with function plotVariants.

plotVariants(txvc, eventID = 1)

2

2

1

2

1 2

N3

N2

N4

T1

T4

T3

N1

T2

7 Advanced use

Functions analyzeFeatures and analyzeVariants wrap multiple analysis steps for convenience. Alternatively, the
functions performing individual steps can be called directly. The previous analysis based on predicted transcript features
can be performed as follows.

txf <- predictTxFeatures(si, gr)

sgf <- convertToSGFeatures(txf)

Event-level prediction and quantification of transcript isoforms from RNA-seq data 6

sgf <- annotate(sgf, txf_annotated)

sgfc <- getSGFeatureCounts(si, sgf)

txv <- findTxVariants(sgf)

Find segments...

Find variants...

Annotate variants...

txvc <- getTxVariantCounts(sgfc, txv)

Feature prediction and counting (with predictTxFeatures and getSGFeatureCounts, respectively) can be performed
for individual samples, and results can be combined at a later point in time (e.g. to distribute samples across a high-
performance computing cluster).

Note that predictTxFeatures predicts features for each sample, merges features across samples and finally performs
filtering and processing of predicted terminal exons. When using predictTxFeatures for individual samples, with predic-
tions intended to be merged later, run predictTxFeatures with argument min overhang = NULL to suppress processing
of terminal exons. Then predictions can subsequently be merged and processed with functions mergeTxFeatures and
processTerminalExons, respectively.

8 Performance

When performing genome-wide analyses or working with large data sets, parallelization is highly recommended. For func-
tions analyzeFeatures, predictTxFeatures and getSGFeatureCounts, parallelization across samples is controlled
with argument BPPARAM. It defaults to MulticoreParam(workers = 1) (no parallelization). For analyses run on a single
node with multiple cores, the number of samples processed in parallel can be specified with argument workers. For more
details, please see the documentation for the BiocParallel package. The number of cores used per samples, enabling
parallel processing of multiple chromosomes/strands, is specified with argument cores per sample. Processing a single
BAM file with ∼ 50 million paired-end reads using 4 cores typically takes ∼ 2− 3 hours for prediction and ∼ 1− 2 hours
for counting. Processing times can be strongly affected by individual genes or genomic regions with many alignments.
For some data sets, it may be beneficial to exclude regions with high coverage (e.g. the mitochondrial chromosome).
Identification of transcript variants from the splice graph is performed on a per-gene basis and can be parallelized by
setting argument cores when using analyzeVariants or findTxVariants.

9 Session information

� R version 3.1.2 (2014-10-31), x86_64-unknown-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
� Other packages: AnnotationDbi 1.28.1, Biobase 2.26.0, BiocGenerics 0.12.1, BiocParallel 1.0.0,

GenomeInfoDb 1.2.3, GenomicFeatures 1.18.2, GenomicRanges 1.18.3, IRanges 2.0.0, S4Vectors 0.4.0,
SGSeq 1.0.6, TxDb.Hsapiens.UCSC.hg19.knownGene 3.0.0, XVector 0.6.0, knitr 1.8

� Loaded via a namespace (and not attached): BBmisc 1.8, BatchJobs 1.5, BiocStyle 1.4.1, Biostrings 2.34.0,
DBI 0.3.1, GenomicAlignments 1.2.1, RCurl 1.95-4.3, RSQLite 1.0.0, Rsamtools 1.18.2, XML 3.98-1.1,
base64enc 0.1-2, biomaRt 2.22.0, bitops 1.0-6, brew 1.0-6, checkmate 1.5.0, codetools 0.2-9, digest 0.6.4,
evaluate 0.5.5, fail 1.2, foreach 1.4.2, formatR 1.0, highr 0.4, igraph 0.7.1, iterators 1.0.7, rtracklayer 1.26.2,
sendmailR 1.2-1, stringr 0.6.2, tools 3.1.2, zlibbioc 1.12.0

http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

Event-level prediction and quantification of transcript isoforms from RNA-seq data 7

References

[1] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner. Splicing graphs and EST assembly
problem. Bioinformatics (Oxford, England), 18 Suppl 1:S181–8, 2002.

[2] Somasekar Seshagiri, Eric W Stawiski, Steffen Durinck, Zora Modrusan, Elaine E Storm, Caitlin B Conboy, Subhra
Chaudhuri, Yinghui Guan, Vasantharajan Janakiraman, Bijay S Jaiswal, Joseph Guillory, Connie Ha, Gerrit J P
Dijkgraaf, Jeremy Stinson, Florian Gnad, Melanie A Huntley, Jeremiah D Degenhardt, Peter M Haverty, Richard
Bourgon, Weiru Wang, Hartmut Koeppen, Robert Gentleman, Timothy K Starr, Zemin Zhang, David A Largaespada,
Thomas D Wu, and Frederic J de Sauvage. Recurrent R-spondin fusions in colon cancer. Nature, pages 1–8, August
2012.

[3] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin T
Morgan, and Vincent J Carey. Software for Computing and Annotating Genomic Ranges. PLoS Computational
Biology, 9(8):e1003118, August 2013.

	1 Background
	2 Overview
	3 Preliminaries
	4 Analysis based on annotated transcript features
	5 Analysis based on predicted transcript features
	6 Analysis of transcript variants
	7 Advanced use
	8 Performance
	9 Session information

