
HTSFilter: Data-based filtering for replicated
transcriptome sequencing experiments

Andrea Rau, Mélina Gallopin, Gilles Celeux, Florence Jaffrézic

Modified: December 10, 2013. Compiled: October 13, 2014

Abstract

This vignette illustrates the use of the HTSFilter package to filter replicated
data from transcriptome sequencing experiments (e.g., RNA sequencing data) for
a variety of different data classes: matrix , data.frame, CountDataSet (the S4 class
associated with the DESeq package), the S3 classes associated with the edgeR
package (DGEList , DGEExact , DGEGLM , and DGELRT), and the S4 class as-
sociated with the DESeq2 package (DESeqDataSet).

Contents

1 Introduction 2

2 Input data 4

3 matrix and data.frame classes 4

4 DESeq package pipeline: S4 class CountDataSet 7

5 edgeR package pipeline 9
5.1 S3 class DGEExact . 9
5.2 S3 class DGELRT . 11

6 DESeq2 package pipeline: S4 class DESeqDataSet 12

7 Alternative normalization using EDAseq 14

8 Session Info 14

1

1 Introduction

High-throughput sequencing (HTS) data, such as RNA-sequencing (RNA-seq) data, are
increasingly used to conduct differential analyses, in which statistical tests are performed
for each biological feature (e.g., a gene, transcript, exon) in order to identify those
whose expression levels show systematic covariation with a particular condition, such
as a treatment or phenotype of interest. For the remainder of this vignette, we will
focus on gene-level differential analyses, although these methods may also be applied to
differential analyses of (count-based measures of) transcript- or exon-level expression.

Because hypothesis tests are performed for gene-by-gene differential analyses, the
obtained p-values must be adjusted to correct for multiple testing. However, procedures
to adjust p-values to control the number of detected false positives often lead to a loss
of power to detect truly differentially expressed (DE) genes due to the large number
of hypothesis tests performed. To reduce the impact of such procedures, independent
data filters are often used to identify and remove genes that appear to generate an
uninformative signal [2]; this in turn moderates the correction needed to adjust for
multiple testing. For independent filtering methods for microarray data, see for example
the genefilter Bioconductor package [5].

The HTSFilter package implements a novel data-based filtering procedure based on
the calculation of a similarity index among biological replicates for read counts arising
from replicated transcriptome sequencing (RNA-seq) data. This technique provides an
intuitive data-driven way to filter high-throughput transcriptome sequencing data and
to effectively remove genes with low, constant expression levels without incorrectly re-
moving those that would otherwise have been identified as DE. The two fundamental
assumptions of the filter implemented in the HTSFilter package are as follows:

1. Biological replicates are present for each experimental condition, and

2. Data can be appropriately normalized (scaled) to correct for systematic inter-
sample biases.

Assuming these conditions hold, HTSFilter implements a method to identify a filtering
threshold that maximizes the filtering similarity among replicates, that is, one where
most genes tend to either have normalized counts less than or equal to the cutoff in all
samples (i.e., filtered genes) or greater than the cutoff in all samples (i.e., non-filtered
genes). This filtering similarity is defined using the global Jaccard index, that is, the
average Jaccard index calculated between pairs of replicates within each experimental
condition; see (author?) [7] for more details.

For more information about between-sample normalization strategies, see [3]; in par-
ticular, strategies for normalizing data with differences in library size and composition
may be found in [1] and [9], and strategies for normalizing data exhibiting sample-specific
biases due to GC content may be found in [8] and [6]. Within the HTSFilter package,
the Trimmed Means of M-values (TMM) [9] and DESeq [1] normalization strategies may

2

Figure 1: Histogram of log transformed counts from the Sultan et al. data [10], illustrat-
ing the large number of genes with very small counts as well as the large heterogeneity
in counts observed.

be used prior to calculating an appropriate data-based filter. If an alternative normal-
ization strategy is needed or desired, the normalization may be applied prior to filtering
the data with normalization="none" in the HTSFilter function; see Section 7 for an
example.

The HTSFilter package is able to accommodate unnormalized or normalized repli-
cated count data in the form of a matrix or data.frame (in which each row corresponds
to a biological feature and each column to a biological sample), a CountDataSet (the S4
class associated with the DESeq package), one of the S3 classes associated with the edgeR
package (DGEList , DGEExact , DGEGLM , and DGELRT), or DESeqDataSet (the S4
class associated with the DESeq2 package), as illustrated in the following sections.

Finally, we note that the filtering method implemented in the HTSFilter package is
designed to filter transcriptome sequencing, and not microarray, data; in particular, the
proposed filter is effective for data with features that take on values over a large order
of magnitude and with a subset of features exhibiting small levels of expression across
samples (see, for example, Figure 1). In this vignette, we illustrate its use on count-based
measures of gene expression, although its use is not strictly limited to discrete data.

3

2 Input data

For the purposes of this vignette, we make use of data from a study of sex-specific
expression of liver cells in human and the DESeq and edgeR packages for differential
analysis. Sultan et al. [10] obtained a high-throughput sequencing data (using a 1G
Illumina Genome Analyzer sequencing machine) from a human embryonic kidney and
a B cell line, with two biological replicates each. The raw read counts and phenotype
tables were obtained from the ReCount online resource [4].

To begin, we load the HTSFilter package, and attach the gene-level count data
contained in sultan:

> library(HTSFilter)

> library(DESeq)

> library(edgeR)

> library(DESeq2)

> data("sultan")

> hist(log(exprs(sultan)+1), col="grey", breaks=25, main="",

+ xlab="Log(counts+1)")

> pData(sultan)

sample.id num.tech.reps cell.line

SRX008333 SRX008333 1 Ramos B cell

SRX008334 SRX008334 1 Ramos B cell

SRX008331 SRX008331 1 HEK293T

SRX008332 SRX008332 1 HEK293T

> dim(sultan)

Features Samples

9010 4

The unfiltered data contain 9010 genes in four samples (two replicates per condition).

3 matrix and data.frame classes

To filter high-throughput sequencing data in the form of a matrix or data.frame, we
first access the expression data, contained in exprs(sultan), and create a vector iden-
tifying the condition labels for each of the samples via the pData Biobase function. We
then filter the data using the HTSFilter function, specifying that the number of tested
thresholds be only 25 (s.len=25) rather than the default value of 100 to reduce com-
putation time for this example. Note that as it is unspecified, the default normalization
method is used for filtering the data, namely the Trimmed Mean of M-values (TMM)
method of Robinson and Oshlack [9]. To use the DESeq normalization method [1],
normalization="DESeq" may be specified.

4

Figure 2: Global Jaccard index for the sultan data calculated for a variety of threshold
values after TMM normalization [9], with a loess curve (blue line) superposed and data-
based threshold values (red cross and red dotted line) equal to 11.764.

> mat <- exprs(sultan)

> conds <- pData(sultan)$cell.line

> ## Only 25 tested thresholds to reduce computation time

> filter <- HTSFilter(mat, conds, s.len=25)

> mat <- filter$filteredData

> dim(mat)

[1] 4995 4

> dim(filter$removedData)

[1] 4015 4

For this example, we find a data-based threshold equal to 11.764; genes with normal-
ized values less than this threshold in all samples are filtered from subsequent analyses.
The proposed filter thus removes 4015 genes from further analyses, leaving 4995 genes.

We note that an important part of the filter proposed in the HTSFilter package is a
check of the behavior of the global similarity index calculated over a range of threshold

5

Figure 3: (left) Global Jaccard index for the sultan data calculated for a variety of
threshold values after TMM normalization [9], with a loess curve (blue line) superposed
and data-based threshold values (red cross and red dotted line) equal to 11.764. (right)
Global Jaccard index for the previously filtered sultan data, with loess curve (blue line)
superposed as before.

values, and in particular, to verify that a reasonable maximum value is reached for
the global similarity index over the range of tested threshold values (see Figure 2); the
maximum possible value for the global Jaccard index is 1. To illustrate the importance
of this check, we attempt to re-apply the proposed filter to the previously filtered data
(in practice, of course, this would be nonsensical):

> par(mfrow = c(1,2), mar = c(4,4,2,2))

> filter.2 <- HTSFilter(mat, conds, s.len=25)

> dim(filter.2$removedData)

[1] 0 4

> hist(log(filter.2$filteredData+1), col="grey", breaks=25, main="",

+ xlab="Log(counts+1)")

In the lefthand panel of Figure 3, we note a plateau of large global Jaccard index
values for thresholds less than 2, with a decrease thereafter; this corresponds to filtering
no genes, unsurprising given that genes with low, constant levels of expression have
already been filtered from the analysis (see the righthand panel of Figure 3).

6

4 DESeq package pipeline: S4 class CountDataSet

The HTSFilter package allows for three potential applications of the proposed filter
within the DESeq analysis pipeline:

1. Estimation of library sizes and dispersion parameters (the estimateSizeEffects

and estimateDispersions functions in DESeq), followed by data filtering on nor-
malized data (recommended);

2. Estimation of library sizes (estimateSizeEffects), data filtering on normalized
data, and estimation of dispersion parameters (estimateDispersions);

3. Data filtering on normalized data, followed by re-estimation of library sizes and
estimation of dispersion parameters (estimateSizeEffects and estimateDis-

persions).

We note that the primary difference among the three strategies would be seen in the
dispersion parameters estimates for genes with low levels of expression; because fitted dis-
persion values are estimated based on the mean-dispersion relationship observed across
the full data in the DESeq package, estimates obtained on filtered data will necessarily
be slightly different from those obtained on unfiltered data, as genes with low levels of
expression would have been removed from the former. On the other hand, we note that
the filtering thresholds (and as such, the genes filtered from the analysis) are identical
for the three strategies listed above. The estimated library sizes may differ slightly in
the third strategy as compared to the first and second strategies; however, this differ-
ence will be minimal as only genes with weak, constant levels of expression are filtered
from the analysis. A full discussion of these three strategies is beyond the scope of this
vignette; however, in practice we recommend the use of the first strategy: estimation of
library sizes and dispersion parameters prior to data filtering.

To filter high-throughput sequencing data in the form of a CountDataSet (the class
used within the DESeq pipeline for differential analysis), we coerce sultan into an object
of the class CountDataSet . Once again, we specify that the number of tested thresholds
be only 25 (s.len=25) rather than the default value of 100 to reduce computation time.
For objects in the form of a CountDataSet , the default normalization strategy is "DESeq",
although alternative normalization strategies may also be used.

> cds <- newCountDataSet(exprs(sultan), conds)

> cds <- estimateSizeFactors(cds)

> cds <- estimateDispersions(cds)

> ## Only 25 tested thresholds to reduce computation time

> cds <- HTSFilter(cds, s.len=25)$filteredData

> res <- nbinomTest(cds, levels(conds)[1], levels(conds)[2])

> class(cds)

7

Figure 4: Global Jaccard index for the sultan data calculated for a variety of threshold
values after DESeq normalization [1], with a loess curve (blue line) superposed and
data-based threshold values (red cross and red dotted line) equal to 10.429.

[1] "CountDataSet"

attr(,"package")

[1] "DESeq"

> dim(cds)

Features Samples

5143 4

As the normalization strategy used here was slightly different, the proposed filter
now removes 3867 genes from further analyses, leaving 5143 genes. Again we verify the
behavior of the global similarity index calculated over a range of threshold values (see
Figure 4). For this example, we find a data-based threshold equal to 10.429; genes with
normalized values less than this threshold in all samples are filtered from subsequent
analyses.

8

5 edgeR package pipeline

We next illustrate the use of HTSFilter within the edgeR pipeline for differential analysis
(S3 classes DGEList , DGEExact , DGEGLM , or DGELRT). For the purposes of this
vignette, we will consider the S3 classes DGEExact and DGELRT . The former is the
class containing the results of the differential expression analysis between two groups of
count libraries (resulting from a call to the function exactTest in edgeR); the latter is
the class containing the results of a generalized linear model (GLM)-based differential
analysis (resulting from a call to the function glmLRT in edgeR). Although the filter may
be applied earlier in the edgeR pipeline (i.e., to objects of class DGEList or DGEGLM),
we do not recommend doing so, as parameter estimation makes use of counts adjusted
using a a quantile-to-quantile method (pseudo-counts).

5.1 S3 class DGEExact

We first coerce the data into the appropriate class with the function DGEList, where
the group variable is set to contain a vector of condition labels for each of the samples.
Next, after calculating normalizing factors to scale library sizes (calcNormFactors), we
estimate common and tagwise dispersion parameters using estimateCommonDisp and
estimateTagwiseDisp and obtain differential analysis results using exactTest. Finally,
we apply the filter using the HTSFilter function, again specifying that the number of
tested thresholds be only 25 (s.len=25) rather than the default value of 100. Note
that as it is unspecified, the default normalization method is used for filtering the data,
namely the Trimmed Mean of M-values (TMM) method [9]; alternative normalization,
including "pseudo.counts" for the quantile-to-quantile adjusted counts used for param-
eter estimation, may also be specified. We suppress the plot of the global Jaccard index
using plot = FALSE, as it is identical to that shown in Figure 2.

> dge <- DGEList(counts=exprs(sultan), group=conds)

> dge <- calcNormFactors(dge)

> dge <- estimateCommonDisp(dge)

> dge <- estimateTagwiseDisp(dge)

> et <- exactTest(dge)

> et <- HTSFilter(et, DGEList=dge, s.len=25, plot=FALSE)$filteredData

> dim(et)

[1] 4995 3

> class(et)

[1] "DGEExact"

attr(,"package")

[1] "edgeR"

9

> topTags(et)

Comparison of groups: Ramos B cell-HEK293T

logFC logCPM PValue

ENSG00000133124 -14.394468 11.56788 0.000000e+00

ENSG00000105369 11.925756 11.23368 0.000000e+00

ENSG00000135144 10.921903 11.05897 0.000000e+00

ENSG00000111348 13.797203 10.92307 1.299113e-315

ENSG00000177606 -9.731883 10.81414 2.902641e-299

ENSG00000012124 10.171680 10.29618 2.879471e-286

ENSG00000118308 13.494132 10.61474 4.245092e-272

ENSG00000046604 -12.906279 10.10888 1.234351e-242

ENSG00000166165 -8.648658 10.13930 5.232947e-230

ENSG00000100721 14.399178 11.53329 7.945829e-230

FDR

ENSG00000133124 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 0.000000e+00

ENSG00000111348 1.622267e-312

ENSG00000177606 2.899739e-296

ENSG00000012124 2.397160e-283

ENSG00000118308 3.029177e-269

ENSG00000046604 7.706978e-240

ENSG00000166165 2.904286e-227

ENSG00000100721 3.968942e-227

Note that the filtered data are of the class DGEExact , allowing for a call to the
topTags function.

> topTags(et)

Comparison of groups: Ramos B cell-HEK293T

logFC logCPM PValue

ENSG00000133124 -14.394468 11.56788 0.000000e+00

ENSG00000105369 11.925756 11.23368 0.000000e+00

ENSG00000135144 10.921903 11.05897 0.000000e+00

ENSG00000111348 13.797203 10.92307 1.299113e-315

ENSG00000177606 -9.731883 10.81414 2.902641e-299

ENSG00000012124 10.171680 10.29618 2.879471e-286

ENSG00000118308 13.494132 10.61474 4.245092e-272

ENSG00000046604 -12.906279 10.10888 1.234351e-242

ENSG00000166165 -8.648658 10.13930 5.232947e-230

ENSG00000100721 14.399178 11.53329 7.945829e-230

10

FDR

ENSG00000133124 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 0.000000e+00

ENSG00000111348 1.622267e-312

ENSG00000177606 2.899739e-296

ENSG00000012124 2.397160e-283

ENSG00000118308 3.029177e-269

ENSG00000046604 7.706978e-240

ENSG00000166165 2.904286e-227

ENSG00000100721 3.968942e-227

5.2 S3 class DGELRT

We follow the same steps as the previous example, where the estimateGLMCommonDisp,
estimateGLMTrendedDisp, and estimateGLMTagwiseDisp functions are now used to
obtain per-gene dispersion parameter estimates, the glmFit function is used to fit a
negative binomial generalized log-linear model to the read counts for each gene, and the
glmLRT function is used to conduct likelihood ratio tests for one or more coefficients in
the GLM. The output of glmLRT is an S3 object of class DGELRT and contains the
GLM differential analysis results. As before, we apply the filter using the HTSFilter

function, again suppressing the plot of the global Jaccard index using plot = FALSE, as
it is identical to that shown in Figure 2.

> design <- model.matrix(~conds)

> dge <- DGEList(counts=exprs(sultan), group=conds)

> dge <- calcNormFactors(dge)

> dge <- estimateGLMCommonDisp(dge,design)

> dge <- estimateGLMTrendedDisp(dge,design)

> dge <- estimateGLMTagwiseDisp(dge,design)

> fit <- glmFit(dge,design)

> lrt <- glmLRT(fit,coef=2)

> lrt <- HTSFilter(lrt, DGEGLM=fit, s.len=25, plot=FALSE)$filteredData

> dim(lrt)

[1] 4995 4

> class(lrt)

[1] "DGELRT"

attr(,"package")

[1] "edgeR"

11

Note that the filtered data are of the class DGEList , allowing for a call to the topTags
function.

> topTags(lrt)

Coefficient: condsRamos B cell

logFC logCPM LR PValue

ENSG00000133124 -14.394460 11.551268 1571.967 0.000000e+00

ENSG00000105369 11.925768 11.254350 1712.406 0.000000e+00

ENSG00000135144 10.921893 11.081746 1486.253 0.000000e+00

ENSG00000111348 13.797195 10.947753 1463.959 2.656591e-320

ENSG00000012124 10.171676 10.331336 1335.896 1.788742e-292

ENSG00000118308 13.494137 10.644652 1303.113 2.381268e-285

ENSG00000177606 -9.731883 10.788439 1302.851 2.713889e-285

ENSG00000046604 -12.906279 10.071821 1120.002 1.484717e-245

ENSG00000100721 14.399175 11.550154 1084.526 7.623798e-238

ENSG00000213402 10.364993 9.692685 1064.316 1.882215e-233

FDR

ENSG00000133124 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 0.000000e+00

ENSG00000111348 3.317418e-317

ENSG00000012124 1.786953e-289

ENSG00000118308 1.936554e-282

ENSG00000177606 1.936554e-282

ENSG00000046604 9.270203e-243

ENSG00000100721 4.231208e-235

ENSG00000213402 9.401664e-231

6 DESeq2 package pipeline: S4 class DESeqDataSet

The HTSFilter package allows for a straightforward integration within the DESeq2 anal-
ysis pipeline, most notably allowing for p-values to be adjusted only for those genes pass-
ing the filter. Note that DESeq2 now impelements an independent filtering procedure by
default in the results function; this filter is a potential alternative filtering technique
and does not need to be used in addition to the one included in HTSFilter . In fact, each
filter is targeting the same weakly expressed genes to be filtered from the analysis. As
such, if the user wishes to make use of HTSFilter within the DESeq2 pipeline, the argu-
ment independentFiltering=FALSE should be used when calling the results function
in DESeq2 .

To illustrate the application of a filter for high-throughput sequencing data in the
form of a DESeqDataSet (the class used within the DESeq2 pipeline for differential

12

analysis), we coerce sultan into an object of the class DESeqDataSet using the function
DESeqDataSetFromMatrix. Once again, we specify that the number of tested thresholds
be only 25 (s.len=25) rather than the default value of 100 to reduce computation
time. For objects in the form of a DESeqDataSet , the default normalization strategy is
"DESeq", although alternative normalization strategies may also be used.

> dds <- DESeqDataSetFromMatrix(countData = exprs(sultan),

+ colData = data.frame(cell.line = conds),

+ design = ~ cell.line)

> dds <- DESeq(dds)

> filter <- HTSFilter(dds, s.len=25, plot=FALSE)$filteredData

> class(filter)

[1] "DESeqDataSet"

attr(,"package")

[1] "DESeq2"

> dim(filter)

[1] 5143 4

> res <- results(filter, independentFiltering=FALSE)

> head(res)

log2 fold change (MAP): cell.line Ramos B cell vs HEK293T

Wald test p-value: cell.line Ramos B cell vs HEK293T

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE

<numeric> <numeric> <numeric>

ENSG00000000003 15.490806 -6.2823663 1.5065344

ENSG00000000419 15.414261 0.9205672 0.6815883

ENSG00000000457 18.491907 -0.8627927 0.6236037

ENSG00000000460 9.704518 0.2755672 0.8156650

ENSG00000001036 7.847756 -5.4044899 1.5915665

ENSG00000001167 77.332720 -0.3702755 0.3163472

stat pvalue padj

<numeric> <numeric> <numeric>

ENSG00000000003 -4.1700782 3.044951e-05 0.0001448676

ENSG00000000419 1.3506206 1.768170e-01 0.2773314581

ENSG00000000457 -1.3835594 1.664934e-01 0.2645275087

ENSG00000000460 0.3378436 7.354810e-01 0.8185702590

ENSG00000001036 -3.3957047 6.845218e-04 0.0022830710

ENSG00000001167 -1.1704717 2.418112e-01 0.3531417082

13

>

As may be seen above, the filtered data remain an object of class DESeqDataSet ,
and subsequent functions from DESeq2 (such as the results summary function results)
may be called directly upon it.

7 Alternative normalization using EDAseq

As a final example, we illustrate the use of the HTSFilter package with an alternative
normalization strategy, namely the full quantile normalization method in the EDASeq
package; such a step may be useful when the TMM or DESeq normalization methods
are not appropriate for a given dataset. Once again, we create a new object of the
appropriate class with the function newSeqExpressionSet and normalize data using
the betweenLaneNormalization function (with which="full") in EDASeq .

> library(EDASeq)

> ses <- newSeqExpressionSet(exprs(sultan),

+ phenoData=pData(sultan))

> ses.norm <- betweenLaneNormalization(ses, which="full")

Subsequently, HTSFilter is applied to the normalized data (again using s.len=25),
and the normalization method is set to norm="none". We may then make use of the on

vector in the results, which identifies filtered and unfiltered genes (respectively) with 0
and 1, to identify rows in the original data matrix to be retained.

> filter <- HTSFilter(exprs(ses.norm), conds, s.len=25, norm="none",

+ plot=FALSE)

> head(filter$on)

> table(filter$on)

8 Session Info

> sessionInfo()

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

14

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] splines stats4 parallel stats graphics

[6] grDevices utils datasets methods base

other attached packages:

[1] DESeq2_1.6.0 RcppArmadillo_0.4.450.1.0

[3] Rcpp_0.11.3 GenomicRanges_1.18.0

[5] GenomeInfoDb_1.2.0 IRanges_2.0.0

[7] S4Vectors_0.4.0 edgeR_3.8.0

[9] limma_3.22.0 DESeq_1.18.0

[11] lattice_0.20-29 locfit_1.5-9.1

[13] HTSFilter_1.6.0 Biobase_2.26.0

[15] BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.28.0 BBmisc_1.7

[3] BatchJobs_1.4 BiocParallel_1.0.0

[5] DBI_0.3.1 Formula_1.1-2

[7] Hmisc_3.14-5 MASS_7.3-35

[9] RColorBrewer_1.0-5 RSQLite_0.11.4

[11] XML_3.98-1.1 XVector_0.6.0

[13] acepack_1.3-3.3 annotate_1.44.0

[15] base64enc_0.1-2 brew_1.0-6

[17] checkmate_1.4 cluster_1.15.3

[19] codetools_0.2-9 colorspace_1.2-4

[21] digest_0.6.4 fail_1.2

[23] foreach_1.4.2 foreign_0.8-61

[25] genefilter_1.48.0 geneplotter_1.44.0

[27] ggplot2_1.0.0 grid_3.1.1

[29] gtable_0.1.2 iterators_1.0.7

[31] latticeExtra_0.6-26 munsell_0.4.2

[33] nnet_7.3-8 plyr_1.8.1

[35] proto_0.3-10 reshape2_1.4

[37] rpart_4.1-8 scales_0.2.4

[39] sendmailR_1.2-1 stringr_0.6.2

[41] survival_2.37-7 tools_3.1.1

[43] xtable_1.7-4

15

References

[1] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence
count data. Genome Biology, 11(R106):1–28, 2010.

[2] Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering
increases detection power for high-throughput experiments. PNAS, 107(21):9546–
9551, 2010.

[3] Marie-Agnès Dillies, Andrea Rau, Julie Aubert, Christelle Hennequet-Antier, Ma-
rine Jeanmougin, Nicolas Servant, Céline Keime, Guillemette Marot, David Castel,
Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Laloë, Caroline
Le Gall, Brigitte Schaëffer, Stéphane Le Crom, and Florence Jaffrézic. A com-
prehensive evaluation of normalization methods for Illumina high-throughput RNA
sequencing data analysis. Briefings in Bioinformatics, (in press), 2012.

[4] A. C. Frazee, B. Langmead, and J. T. Leek. ReCount: a multi-experiment resource
of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics, 12(449),
2011.

[5] R. Gentleman, V. Carey, W. Huber, and F. Hahne. genefilter: methods for filtering
genes from microarray experiments. R package version 1.38.0.

[6] Kasper D. Hansen, Rafael A. Irizarry, and Zhijin Wu. Removing technical vari-
ability in RNA-seq data using conditional quantile normalization. Biostatistics, (in
press)(227), 2012.

[7] A. Rau, M. Gallopin, G. Celeux, and F. Jaffrézic. Data-based filtering for repli-
cated high-throughput transcriptome sequencing experiments. Bioinformatics, doi:
10.1093/bioinformatics/btt350, 2013.

[8] Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit. GC-content
normalization for RNA-seq data. BMC Bioinformatics, 12(480), 2011.

[9] Mark D. Robinson and Alicia Oshlack. A scaling normalization method for differ-
ential expression analysis of RNA-seq data. Genome Biology, 11(R25), 2010.

[10] M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf,
M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk, D. Schmidt, S. O’Keeffe,
S. Haas, M. Vingron, H. Lehrach, and M. L. Yaspo. A global view of gene activity
and alternative splicing by deep sequencing of the human transcriptome. Science,
15(5891):956–60, 2008.

16

	Introduction
	Input data
	matrix and data.frame classes
	DESeq package pipeline: S4 class CountDataSet
	edgeR package pipeline
	S3 class DGEExact
	S3 class DGELRT

	DESeq2 package pipeline: S4 class DESeqDataSet
	Alternative normalization using EDAseq
	Session Info

