Package 'QDNAseq'

April 10, 2015

Version 1.2.4

Date 2015-01-21

Title Quantitative DNA sequencing for chromosomal aberrations

Author Ilari Scheinin [aut], Daoud Sie [aut, cre], Henrik Bengtsson [aut]

Maintainer Daoud Sie <d.sie@vumc.nl>

Depends R (>= 2.15.0)

Imports graphics, methods, stats, utils, matrixStats (>= 0.9.4), R.utils (>= 1.28.4), Biobase (>= 2.18.0), CGHbase (>= 1.18.0), CGHcall (>= 2.18.0), DNAcopy (>= 1.32.0), Rsamtools (>= 1.10.0)

Suggests R.cache (>= 0.9.0), digest, snowfall, BSgenome, GenomeInfoDb

Description Quantitative DNA sequencing for chromosomal aberrations. The genome is divided into non-overlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively.

biocViews CopyNumberVariation, DNASeq, Genetics, GenomeAnnotation, Preprocessing, QualityControl, Sequencing

License GPL

URL https://github.com/ccagc/QDNAseq

BugReports https://github.com/ccagc/QDNAseq/issues

R topics documented:

DNAseq-package	2
ddPhenodata	3
pplyFilters	4
inReadCounts	5
allBins	7
ompareToReference	8

correctBins	9
createBins	10
estimateCorrection	11
exportBins	12
frequencyPlot	13
getBinAnnotations	14
highlightFilters	15
isobarPlot	16
LGG150	
makeCgh 1	
noisePlot	
normalizeBins	
normalizeSegmentedBins	
plot	
poolRuns	
QDNAseq-deprecated	
QDNAseqCopyNumbers	
QDNAseqReadCounts	
QDNAseqSignals	
segmentBins	
smoothOutlierBins	24
	26

Index

QDNAseq-package Package QDNAseq

Description

Quantitative DNA sequencing for chromosomal aberrations. The genome is divided into nonoverlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively.

Details

A package to detect chromosomal aberrations from whole-genome sequencing data. QDNAseqReadCounts and QDNAseqCopyNumbers classes are used as the main data structures.

How to cite this package

Whenever using this package, please cite: Scheinin I, Sie D, Bengtsson H, van de Wiel MA, Olshen AB, van Thuijl HF, van Essen HF, Eijk PP, Rustenburg F, Meijer GA, Reijneveld JC, Wesseling P, Pinkel D, Albertson DG and Ylstra B (2014). "DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly." _Genome Research_, *24*, pp. 2022-2032.

addPhenodata

License

This package is licensed under GPL.

Author(s)

Ilari Scheinin

addPhenodata	Adds phenotype data from a file to a QDNAseqReadCounts or a QD-
	NAseqCopyNumbers object

Description

Adds phenotype data from a file to a QDNAseqReadCounts or a QDNAseqCopyNumbers object.

Usage

```
addPhenodata(object, phenofile)
```

Arguments

object	A QDNAseqReadCounts or QDNAseqCopyNumbers object.
phenofile	A file name with phenotypic data for samples in object.

Value

Returns a QDNAseqReadCounts or QDNAseqCopyNumbers object with phenotype data added.

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
## Not run:
readCounts <- addPhenodata(readCounts, "phenodata.txt")
## End(Not run)</pre>
```

```
applyFilters
```

Description

Adjusts the filtering on which bins are used.

Usage

Arguments

object	A QDNAseqReadCounts object.
residual	Either a logical specifying whether to filter based on loess residuals of the calibration set, or if a numeric, the cutoff as number of standard deviations estimated with madDiff to use for. Default is TRUE, which corresponds to 4.0 standard deviations.
blacklist	Either a logical specifying whether to filter based on overlap with blacklisted regions, or if numeric, the maximum percentage of overlap allowed. Default is TRUE, which corresponds to no overlap allowd (i.e. value of 0).
mappability	A numeric in $[0,100]$ to specify filtering out bins with mappabilities lower than the number specified. NA (default) or FALSE will not filter based on mappability.
bases	A numeric specifying the minimum percentage of characterized bases (not Ns) in the reference genome sequence. NA (default) or FALSE will not filted based on uncharacterized bases.
chromosomes	A character vector specifying which chromosomes to filter out. Defaults to the sex chromosomes, i.e. $c("X", "Y")$.

Value

Returns a QDNAseqReadCounts object with updated filtering.

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)</pre>
```

binReadCounts

Description

Calculate binned read counts from a set of BAM files.

Usage

```
binReadCounts(bins, bamfiles=NULL, path=NULL, ext="bam", bamnames=NULL, phenofile=NULL,
cache=getOption("QDNAseq::cache", FALSE), force=!cache, isPaired=NA, isProperPair=NA,
isUnmappedQuery=FALSE, hasUnmappedMate=NA, isMinusStrand=NA, isMateMinusStrand=NA,
isFirstMateRead=NA, isSecondMateRead=NA, isNotPrimaryRead=NA,
isNotPassingQualityControls=FALSE, isDuplicate=FALSE, minMapq=37)
```

Arguments

bins	A data.frame or an AnnotatedDataFrame object containing bin annotations.	
bamfiles	A character vector of (BAM) file names. If NULL (default), all files with extension ext, are read from directory path.	
path	If bamfiles is NULL, directory path to read input files from. Defaults to the current working directory.	
ext	File name extension of input files to read, default is "bam".	
bamnames	An optional character vector of sample names. Defaults to file names with ex- tension ext removed.	
phenofile	An optional character(1) specifying a file name for phenotype data.	
cache	Whether to read and write intermediate cache files, which speeds up subsequent analyses of the same files. Requires packages R.cache and digest (both available on CRAN) to be installed. Defaults to getOption("QDNAseq::cache", FALSE).	
force	When using the cache, whether to force reading input data from the BAM files even when an intermediate cache file is present.	
isPaired	A logical(1) indicating whether unpaired (FALSE), paired (TRUE), or any (NA, default) read should be returned.	
isProperPair	A logical(1) indicating whether improperly paired (FALSE), properly paired (TRUE), or any (NA, default) read should be returned. A properly paired read is defined by the alignment algorithm and might, e.g., represent reads aligning to identical reference sequences and with a specified distance.	
isUnmappedQuery		
	A logical(1) indicating whether unmapped (TRUE), mapped (FALSE, default), or any (NA) read should be returned.	
hasUnmappedMate		
	A logical(1) indicating whether reads with mapped (FALSE), unmapped (TRUE), or any (NA, default) mate should be returned.	

isMinusStrand	A logical(1) indicating whether reads aligned to the plus (FALSE), minus (TRUE),
	or any (NA, default) strand should be returned.

isMateMinusStrand

A logical(1) indicating whether mate reads aligned to the plus (FALSE), minus (TRUE), or any (NA, default) strand should be returned.

isFirstMateRead

A logical(1) indicating whether the first mate read should be returned (TRUE) or not (FALSE), or whether mate read number should be ignored (NA, default).

isSecondMateRead

A logical(1) indicating whether the second mate read should be returned (TRUE) or not (FALSE), or whether mate read number should be ignored (NA, default).

isNotPrimaryRead

A logical(1) indicating whether alignments that are primary (FALSE), are not primary (TRUE) or whose primary status does not matter (NA, default) should be returned. A non-primary alignment ("secondary alignment" in the SAM specification) might result when a read aligns to multiple locations. One alignment is designated as primary and has this flag set to FALSE; the remainder, for which this flag is TRUE, are designated by the aligner as secondary.

isNotPassingQualityControls

A logical(1) indicating whether reads passing quality controls (FALSE, default), reads not passing quality controls (TRUE), or any (NA) read should be returned.

- isDuplicate A logical(1) indicating that un-duplicated (FALSE, default), duplicated (TRUE), or any (NA) reads should be returned. 'Duplicated' reads may represent PCR or optical duplicates.
- minMapq If quality scores exists, the minimum quality score required in order to keep a read, otherwise all reads are kept.

Value

Returns a QDNAseqReadCounts object with assay data element counts containing the binned read counts as non-negative integers.

Author(s)

Ilari Scheinin

Examples

```
## Not run: # read all files from the current directory with names ending in .bam
bins <- getBinAnnotations(15)
readCounts <- binReadCounts(bins)</pre>
```

End(Not run)

callBins

Description

Call aberrations from segmented copy number data.

Usage

```
callBins(object, ...)
```

Arguments

object	An object of class QDNAseqCopyNumbers
	Additional arguments passed to CGHcall.

Details

Chromosomal aberrations are called with **CGHcall**. It has been developed for the analysis of series of cancer samples, and uses a model that contains both gains and losses. If used on a single sample, or especially only on a subset of chromosomes, or especially on a single non-cancer sample, it may fail.

Value

Returns an object of class QDNAseqCopyNumbers with calling results added.

Author(s)

Ilari Scheinin

See Also

Internally, CGHcall and ExpandCGHcall of the CGHcall package are used.

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSegmented <- segmentBins(copyNumbersSmooth)
copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)
copyNumbersCalled <- callBins(copyNumbersSegmented)</pre>
```

compareToReference Divide binned read counts with those of reference samples

Description

Divide binned read counts with those of reference samples.

Usage

compareToReference(object, references, force=FALSE)

Arguments

object	An object of class QDNAseqCopyNumbers.
references	A numeric vector of indexes of the reference sample. Must be the same length as there are samples in object. When NA, the sample will be kept as is. When FALSE, the sample will be removed from the output. As an example, object contains three samples: tumor1, tumor2, and normal2. There is no reference for tumor1, but normal2 is a matched normal sample from the same patient as tumor2. The keep tumor1 as is, but to divide tumor2 with normal2, argument references should be $c(NA, 3, FALSE)$.
force	Whether to force the operation even when downstream data will be lost.

Value

Returns a QDNAseqCopyNumbers object with the desired samples divided by the signal of their reference samples.

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)
# Note: the following command will compare the sample to itself, which
# does not really make sense:
tumorVsNormal <- compareToReference(copyNumbersSmooth, c(1))</pre>
```

correctBins

Description

Correct binned read counts for GC content and mappability.

Usage

```
correctBins(object, fit=NULL, method="ratio", adjustIncompletes=TRUE, ...)
```

Arguments

object	An QDNAseqReadCounts object with counts data.	
fit	An optional matrix of values to use for the correction. If NULL (default), assay data fit from object is used. If it is missing, it is generated with a call to estimateCorrection().	
method	A character(1) string speficying the correction method. ratio (default) divides counts with fit. median calculates the median fit, and defines the correction for bins with GC content gc and mappability map as median(fit) - fit(gc,map), which is added to counts. Method none leaves counts untouched.	
adjustIncompletes		
	A boolean(1) specifying whether counts for bins with uncharacterized nucleotides (N's) in their reference genome sequence should be adjusted by dividing them with the percentage of characterized (A, C, G, T) nucleotides. Defaults to TRUE.	
	Additional arguments passed to estimateCorrection().	

Value

Returns a QDNAseqCopyNumbers object with assay data element copynumber.

Author(s)

Ilari Scheinin

See Also

Internally, loess is used to fit the regression model.

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)</pre>
```

createBins

Description

Builds bin annotation data for a particular bin size.

Usage

createBins(bsgenome, binSize, ignoreMitochondria=TRUE)

Arguments

bsgenome	A BSgenome package.
binSize	A numeric scalar specifying the width of the bins in units of kbp (1000 base pairs), e.g. binSize=15 corresponds to 15 kbp bins.
ignoreMitochondria	
	Whater to ignore the mitachandria

Wheter to ignore the mitochondria.

Value

Returns a data.frame with columns chromosome, start, end, bases, and gc, which correspond to the chromosome name, positions of the first and last base pair in the bin, the percentage of characterized nucleotides (A, C, G, or T, i.e. non-N), and GC content (percentage of C and G nucleotides of non-N nucleotides).

Author(s)

Ilari Scheinin

See Also

getBinAnnotations().

Examples

```
## Not run: # NOTE: These take a very long time to run.
library(BSgenome.Hsapiens.UCSC.hg19)
bins <- createBins(BSgenome.Hsapiens.UCSC.hg19, 15)
bins$mappability <- calculateMappability(bins,
    bigWigFile=/path/to/wgEncodeCrgMapabilityAlign50mer.bigWig,
    bigWigAverageOverBed=/path/to/bigWigAverageOverBed)
bins$blacklist <- calculateBlacklist(bins,
    bedFiles=c(/path/to/wgEncodeDacMapabilityConsensusExcludable.bed,
    /path/to/wgEncodeDukeMapabilityRegionsExcludable.bed))
bins$residual <- iterateResiduals(readCountsG1K)</pre>
```

End(Not run)

estimateCorrection Estimate correction to read counts for GC content and mappability

Description

Estimate correction to read counts for GC content and mappability.

Usage

```
estimateCorrection(object, span=0.65, family="symmetric", adjustIncompletes=TRUE,
maxIter=1, cutoff=4, ...)
```

Arguments

object	An QDNAseqReadCounts object with counts data.
span	For loess, the parameter alpha which controls the degree of smoothing.
family	For loess, if "gaussian" fitting is by least-squares, and if "symmetric" a re- descending M estimator is used with Tukey's biweight function.
adjustIncomplet	tes
	A boolean(1) specifying whether counts for bins with uncharacterized nucleotides (N's) in their reference genome sequence should be adjusted by dividing them with the percentage of characterized (A, C, G, T) nucleotides. Defaults to TRUE.
maxIter	An integer(1) specifying the maximum number of iterations to perform, default is 1. If larger, after the first loess fit, bins with median residuals larger than cutoff are removed, and the fitting repeated until the list of bins to use stabilizes or after maxIter iterations.
cutoff	A numeric(1) specifying the number of standard deviations (as estimated with madDiff) the cutoff for removal of bins with median residuals larger than the cutoff. Not used if maxIter=1 (default).
	Additional aguments passed to loess.

Value

Returns a QDNAseqReadCounts object with the assay data element fit added.

Author(s)

Ilari Scheinin

See Also

Internally, **loess** is used to fit the regression model.

Examples

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)</pre>
```

exportBins

Exports to a file

Description

Exports to a file.

Usage

Arguments

object	A QDNAseqReadCounts or QDNAseqCopyNumbers object.
file	Filename. For formats that support only one sample per file, such as BED, '%s' can be used as a placeholder for sample name or '%d' for sample number.
format	Format to export in. Currently supported ones are "tsv" (tab separated values), "igv" (Integrative Genomics Viewer), and "bed" (BED file format).
type	Type of data to export, options are "copynumber" (corrected or uncorrected read counts), "segments", or "calls".
filter	If TRUE, bins are filtered, otherwise not.
logTransform	If TRUE (default), data will be log2-transformed.
digits	The number of digits to round to. If not numeric, no no rounding is performed.
	Additional arguments passed to write.table.

Details

Exports object to a file.

Author(s)

Ilari Scheinin

12

frequencyPlot

Examples

```
## Not run:
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)
exportBins(copyNumbersSmooth, file="LGG150.igv", format="igv")
```

End(Not run)

frequencyPlot

Plot copy number aberration frequencies

Description

Plot copy number aberration frequencies.

Usage

frequencyPlot(x, y, ...)

Arguments

х	A QDNAseqCopyNumbers object with calls data.
У	missing

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)
copyNumbersSegmented <- segmentBins(copyNumbersSmooth)
copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)
copyNumbersCalled <- callBins(copyNumbersSegmented)
frequencyPlot(copyNumbersCalled)</pre>
```

getBinAnnotations Gets bin annotation data for a particular bin size

Description

Gets bin annotation data for a particular bin size.

Usage

```
getBinAnnotations(binSize, genome="hg19", type="SR50", force=FALSE,
    path=getOption("QDNAseq::binAnnotationPath", "http://qdnaseq.s3.amazonaws.com"))
downloadBinAnnotations(binSize, genome="hg19", type="SR50", force=FALSE,
    path=getOption("QDNAseq::binAnnotationPath", "http://qdnaseq.s3.amazonaws.com"))
```

Arguments

binSize	A numeric scalar specifying the width of the bins in units of kbp (1000 base pairs), e.g. binSize=15 corresponds to 15 kbp bins.
genome	A character string specify the genome and genome version to be used.
type	A character string specify the experiment type, e.g. "SR50" or "PE1000".
force	If TRUE, the bin anonnation data is retrieved/calculated regardless of it already exists in the cache or not.
path	A character string specifying the path for the bin annotation files. Defaults to downloading from the Internet, but can also be a local path. Can also be defined by setting the QDNAseq::binAnnotationPath option.

Details

The current function name is getBinAnnotations, for which downloadBinAnnotations is an old and deprecated alias that will be removed in future versions.

Value

Returns a AnnotatedDataFrame object.

Author(s)

Ilari Scheinin

See Also

createBins().

highlightFilters

Examples

```
## Not run:
bins <- getBinAnnotations(15)
## End(Not run)
```

highlightFilters Highlights data points in a plotted profile to evaluate filtering

Description

Highlights data points in a plotted profile to evaluate filtering.

Usage

```
highlightFilters(object, col="red", residual=NA, blacklist=NA, mappability=NA, bases=NA,
    type="union", ...)
```

Arguments

object	A QDNAseqCopyNumbers object.
col	The color used for highlighting.
residual	Either a logical specifying whether to filter based on loess residuals of the calibration set, or if a numeric, the cutoff as number of standard deviations estimated with madDiff to use for. Default is TRUE, which corresponds to 4.0 standard deviations.
blacklist	Either a logical specifying whether to filter based on overlap with blacklisted regions, or if numeric, the maximum percentage of overlap allowed. Default is TRUE, which corresponds to no overlap allowd (i.e. value of 0).
mappability	A numeric in $[0,100]$ to specify filtering out bins with mappabilities lower than the number specified. NA (default) or FALSE will not filter based on mappability.
bases	A numeric specifying the minimum percentage of characterized bases (not Ns) in the reference genome sequence. NA (default) or FALSE will not filted based on uncharacterized bases.
type	When specifying multiple filters (residual, blacklist, mappability, bases), whether to highlight their union (default) or intersection.
	Further arguments to points.

Author(s)

Ilari Scheinin

Examples

```
data(LGG150)
readCounts <- LGG150
plot(readCounts)
highlightFilters(readCounts, residual=TRUE, blacklist=TRUE)</pre>
```

```
isobarPlot
```

Plot median read counts as a function of GC content and mappability

Description

Plot median read counts as a function of GC content and mappability.

Usage

isobarPlot(x, y, ...)

Arguments

х	A QDNAseqReadCounts object.
У	missing
•••	

Author(s)

Ilari Scheinin

Examples

```
data(LGG150)
readCounts <- LGG150
isobarPlot(readCounts)</pre>
```

LGG150

LGG150 chromosomes 7-10

Description

An example data set of read counts from chromosomes 7-10 of sample LGG150, contained within a QDNAseqReadCounts object

Author(s)

Ilari Scheinin

16

makeCgh

Description

Constructs a 'cghRaw', 'cghSeg', or 'cghCall' object.

Usage

```
makeCgh(object, filter=TRUE, ...)
```

Arguments

object	A QDNAseqCopyNumbers object.
filter	If TRUE, bins are filtered, otherwise not.
	Not used.

Value

Returns a cghRaw if the object has not been segmented, a cghSeg if it has been segmented but not called, or cghCall if it has been called as well.

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)
cgh <- makeCgh(copyNumbersSmooth)</pre>
```

noisePlot

Description

Plot noise as a function of sequence depth.

Usage

noisePlot(x, y, ...)

Arguments

х	${f A}$ QDNAseqReadCounts object.
У	missing
	Further arguments to plot and text.

Author(s)

Ilari Scheinin

Examples

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
noisePlot(readCountsFiltered)</pre>
```

normalizeBins Normalizes binned read counts

Description

Normalizes binned read counts.

Usage

```
normalizeBins(object, method="median", force=FALSE)
```

Arguments

object	A QDNAseqCopyNumbers object with copynumber data.
method	A character string specifying the normalization method. Choices are "mean", "median" (default), or "mode". A partial string sufficient to uniquely identify the choice is permitted.
force	Running this function will remove possible segmentation and calling results. When they are present, running requires specifying force is TRUE.

Value

Returns a QDNAseqCopyNumbers object with the assay data element copynumber scaled with the chosen method.

Author(s)

Ilari Scheinin

Examples

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)</pre>
```

normalizeSegmentedBins

Normalize segmented bins

Description

Normalize segmented bins.

Usage

```
normalizeSegmentedBins(object, inter=c(-0.1, 0.1), force=FALSE)
```

Arguments

object	An object of class QDNAseqCopyNumbers.
inter	The interval in which the function should search for the normal level.
force	Whether to force execution when it causes removal of downstream calling re- sults.

Details

This function recursively searches for the interval containing the most segmented data, decreasing the interval length in each recursion. The recursive search makes the post-segmentation normalization robust against local maxima. This function is particularly useful for profiles for which, after segmentation, the 0-level does not coincide with many segments. It is more or less harmless to other profiles. We advise to keep the search interval (inter) small, in particular at the positive (gain) side to avoid that the 0-level is set to a common gain level.

Value

Returns an object of class QDNAseqCopyNumbers with re-normalized data.

Author(s)

Ilari Scheinin

See Also

Internally, postsegnormalize of the CGHcall package is used.

Examples

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSegmented <- segmentBins(copyNumbersSmooth)
copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)</pre>
```

```
plot
```

Plot copy number profile

Description

Plot copy number profile.

Usage

plot(x, y, ...)

Arguments

х	A QDNAseqReadCounts or QDNAseqCopyNumbers object.
У	missing

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
plot(copyNumbers)</pre>
```

poolRuns

Description

Pools binned read counts across samples.

Usage

poolRuns(object, samples, force=FALSE)

Arguments

object	A QDNAseqReadCounts or QDNAseqCopyNumbers object.
samples	A character vector of new sample names. Samples with identical names will be
	pooled together. Must be the same length as there are samples in object.
force	Whether to force the operation even when downstream data will be lost.

Value

Returns a QDNAseqReadCounts or QDNAseqCopyNumbers object.

Author(s)

Ilari Scheinin

Examples

```
data(LGG150)
readCounts <- LGG150
# Note: the following command will "pool" data from a single run, which
# does not really make sense:
pooledReadCounts <- poolRuns(readCounts, "LGG150")</pre>
```

QDNAseq-deprecated Deprecated functions in package 'QDNAseq'

Description

These functions are provided for compatibility with older versions of 'QDNAseq' only, and will be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated below:

downloadBinAnnotations: getBinAnnotations

QDNAseqCopyNumbers Container for QDNAseq read count data

Description

Container for QDNAseq read count data

Assay data elements

An object of this class contains the following elements:

- copynumber (numeric) Corrected "count" signals in $[0, +\infty)$ An object with only this field is created by correctBins().
- segmented (numeric; optional) Segmented data in $[0, +\infty)$, added by calling segmentBins().
- calls (integer; optional) Calls as -2=deletion, -1=loss, 0=normal, 1=gain, 2=amplification, added by calling callBins().
- probdloss (numeric; optional) Probabilities of deletions in [0, 1], added by calling callBins().
- probloss (numeric; optional) Probabilities of losses in [0, 1], added by calling callBins().
- probnorm (numeric; optional) Probabilities of normal copy number in [0, 1], added by calling callBins().

probgain (numeric; optional) Probabilities of gains in [0, 1], added by calling callBins(). probamp (numeric; optional) Probabilities of amplifications in [0, 1], added by calling callBins().

Missing values

The bin data (assay data) may contain missing values.

Author(s)

Ilari Scheinin

QDNAseqReadCounts Container for QDNAseq read count data

Description

Container for QDNAseq read count data

Assay data elements

An object of this class contains (a subset) the following elements:

- counts (numeric) Binned read counts as non-negative integers in $\{0, 1, 2, ...\}$. An object with only this field is created by binReadCounts().
- fit (numeric; optional) Loess fit of "count" signals as doubles. Normally, these should all be positive values, but a small number of edge case bins might contain negatives, especially when fitting unfiltered data. This element is added after calling estimateCorrection().

QDNAseqSignals

Missing values

The bin data (assay data) may contain missing values.

Author(s)

Ilari Scheinin

QDNAseqSignals A parent class for containers of QDNAseq data

Description

A parent class for containers of QDNAseq data

Author(s)

Ilari Scheinin

segmentBins

Segments normalized copy number data

Description

Segments normalized copy number data.

Usage

segmentBins(object, smoothBy=FALSE, alpha=0.000000001, undo.splits="sdundo", undo.SD=1, force=FALSE, transformFun="log2", ...)

Arguments

object	An object of class QDNAseqCopyNumbers.
smoothBy	An optional integer value to perform smoothing before segmentation by taking the mean of every smoothBy bins, and then segment those means. Default is to perform no smoothing.
alpha	Significance levels for the test to accept change-points. Default is 1e-10.
undo.splits	A character string specifying how change-points are to be undone, if at all. De- fault is "sdundo", which undoes splits that are not at least this many SDs apart. Other choices are "prune", which uses a sum of squares criterion, and "none".
undo.SD	The number of SDs between means to keep a split if undo.splits="sdundo". Default is 1.0.
force	Whether to force execution when it causes removal of downstream calling re- sults.

transformFun	A function to transform the data with. This can be the default " $\log 2$ " for $\log 2(x)$
	+ .Machine\$double.xmin), "sqrt" for the Anscombe transform of sqrt(x * 3/8)
	which stabilizes the variance, "none" for no transformation, or any R function
	that performs the desired transformation and also its inverse when called with
	parameter inv=TRUE.
	Additional arguments passed to segment.

Value

Returns an object of class QDNAseqCopyNumbers with segmentation results added.

Author(s)

Ilari Scheinin

See Also

Internally, segment of the **DNAcopy** package, which implements the CBS method, is used to segment the data.

Examples

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)
copyNumbersSegmented <- segmentBins(copyNumbersSmooth)</pre>
```

smoothOutlierBins Smooth outlier bins after normalization

Description

Smooth outlier bins after normalization.

Usage

```
smoothOutlierBins(object, logTransform=TRUE, force=FALSE, ...)
```

Arguments

object	A QDNAseqCopyNumbers object with copynumber data.
logTransform	If TRUE (default), data will be log2-transformed.
force	Running this function will remove possible segmentation and calling results. When they are present, running requires specifying force is TRUE.
	Additional arguments passed to smooth.CNA.

smoothOutlierBins

Value

Returns a QDNAseqCopyNumbers object with the values for outliers smoothed. See smooth.CNA for more details. If logTransform is TRUE, these signals are log2-transformed prior to smoothing, but afterwards back-transformed..

Author(s)

Ilari Scheinin

```
data(LGG150)
readCounts <- LGG150
readCountsFiltered <- applyFilters(readCounts)
readCountsFiltered <- estimateCorrection(readCountsFiltered)
copyNumbers <- correctBins(readCountsFiltered)
copyNumbersNormalized <- normalizeBins(copyNumbers)
copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)</pre>
```

Index

*Topic IO addPhenodata, 3 binReadCounts, 5 exportBins, 12 getBinAnnotations, 14 *Topic **aplot** highlightFilters, 15 *Topic classes QDNAseqCopyNumbers, 22 QDNAseqReadCounts, 22 QDNAseqSignals, 23 *Topic datasets LGG150, 16 *Topic file addPhenodata, 3 binReadCounts, 5 exportBins, 12 *Topic **hplot** frequencyPlot, 13 isobarPlot. 16 noisePlot, 18 plot, 20 *Topic **loess** correctBins, 9 estimateCorrection, 11 *Topic **manip** applyFilters,4 callBins, 7 compareToReference, 8 correctBins, 9 estimateCorrection, 11 makeCgh, 17 normalizeBins, 18 normalizeSegmentedBins, 19 poolRuns, 21 segmentBins, 23 smoothOutlierBins, 24 *Topic package QDNAseq-package, 2

*Topic smooth segmentBins, 23 addPhenodata, 3 AnnotatedDataFrame, 5, 14 applyFilters,4 applyFilters,QDNAseqReadCounts-method (applyFilters), 4 binReadCounts, 5, 22 bpend,QDNAseqSignals-method (QDNAseqSignals), 23 bpstart,QDNAseqSignals-method (QDNAseqSignals), 23 calculateBlacklist (createBins), 10 calculateMappability (createBins), 10 callBins, 7, 22 callBins,QDNAseqCopyNumbers-method (callBins), 7 CGHcall, 7 cghCall, 17 cghRaw, 17 cghSeg, 17 character, *4*, *14*, *18* chromosomes,QDNAseqSignals-method (QDNAseqSignals), 23 compareToReference, 8 compareToReference,QDNAseqCopyNumbers,numeric-method (compareToReference), 8 correctBins, 9, 22 correctBins,QDNAseqReadCounts-method (correctBins), 9 createBins, 10, 14

data.frame, 10
downloadBinAnnotations
 (getBinAnnotations), 14

estimateCorrection, 9, 11, 22

INDEX

estimateCorrection,QDNAseqReadCounts-method (estimateCorrection),11 (poolRuns,QDNAseqSignals,character-method (poolRuns),21 postsegnormalize, 20 exportBins,12 exportBins,QDNAseqSignals-method (exportBins),12 QDNAseq-package),2 QDNAseq-deprecated,21

FALSE, 4, 8, 15QDNAseqCopyNumbers, 2, 3, 7-frequencyPlot, 1317-21, 22, 24, 25frequencyPlot, QDNAseqCopyNumbers, missing-methQdNAseqCopyNumbers-class
(frequencyPlot), 13(QDNAseqCopyNumbers-class

getBinAnnotations, 10, 14, 21

LGG150, 16 loess, 9, 11 logical, 4, 15

madDiff, 4, 11, 15
makeCgh, 17
makeCgh,QDNAseqCopyNumbers-method
 (makeCgh), 17

NA, 8

noisePlot, 18 noisePlot, QDNAseqReadCounts, missing-method (noisePlot), 18 normalizeBins, 18 normalizeBins, QDNAseqCopyNumbers-method (normalizeBins), 18 normalizeSegmentedBins, 19 normalizeSegmentedBins, QDNAseqCopyNumbers-method (normalizeSegmentedBins), 19 numeric, 4, 10, 12, 14, 15, 22

poolRuns,QDNAseqSignals,character-method (poolRuns), 21 postsegnormalize, 20 QDNAseq(QDNAseq-package), 2 QDNAseq-deprecated, 21 QDNAseq-package, 2 QDNAseqCopyNumbers, 2, 3, 7–9, 12, 13, 15, 17–21, 22, 24, 25 chQdNAseqCopyNumbers-class (QDNAseqCopyNumbers), 22 QDNAseqReadCounts, 2–4, 6, 9, 11, 12, 16, 18, 20, 21, 22 QDNAseqReadCounts-class (QDNAseqReadCounts), 22 QDNAseqReadCounts, 22 QDNAseqSignals, 23 QDNAseqSignals, 23 QDNAseqSignals, 23

segment, 24
segmentBins, 22, 23
segmentBins, QDNAseqCopyNumbers-method
 (segmentBins), 23
smooth.CNA, 24, 25
smoothOutlierBins, 24
smoothOutlierBins, QDNAseqCopyNumbers-method
 (smoothOutlierBins), 24

text, *18* TRUE, *4*, *9*, *11*, *12*, *14*, *15*, *17*, *18*, *24*, *25*

write.table,12