
Package ‘BiRewire’
April 9, 2015

Version 1.8.0

Date 2014-09-16

Title High-performing routines for the randomization of a bipartite
graph (or a binary event matrix) preserving degree distribution
(or marginal totals).

Maintainer Andrea Gobbi <gobbi.andrea@mail.com>

Description Fast functions for bipartite network rewiring through N
consecutive switching steps (See References) and for the
computation of the minimal number of switching steps to be
performed in order to maximise the dissimilarity with respect
to the original network. Includes function for the analysis of
the introduced randomness across the switching and several
other routines to analyse the resulting networks and their
natural projections. Extension to undirected networks (not
bipartite) is also provided.

License GPL-3

Depends igraph

Suggests RUnit, BiocGenerics

Author Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio
[cbt], Giuseppe Jurman [cbt], Julio Saez-Rodriguez [cbt] .

URL http://www.ebi.ac.uk/~iorio/BiRewire

biocViews Network

R topics documented:
BiRewire-package . 2
birewire.analysis . 3
birewire.analysis.undirected . 5
birewire.bipartite.from.incidence . 8
birewire.rewire . 9
birewire.rewire.bipartite . 11
birewire.rewire.bipartite.and.projections . 12

1

http://www.ebi.ac.uk/~iorio/BiRewire

2 BiRewire-package

birewire.similarity . 14
BRCA_binary_matrix . 15

Index 16

BiRewire-package The BiRewire package

Description

R package for computationally-efficient rewiring of bipartite graphs (or randomisation of 0-1 ta-
bles with prescribed marginal totals). The package provides useful functions for the analysis and
the randomisation of large biological datasets that can be encoded as 0-1 tables, hence modeled
as bipartite graphs by considering a 0-1 table as an incidence matrix. Large collections of such
randomised tables can be used to approximate null models, preserving event-rates both across rows
and columns, for statistical significance tests of combinatorial properties of the original dataset.
Routines for undirected graphs are also provided.

Details

Summary:

Package: BiRewire
Version: 1.3.2
Date: 2013-07-15
Require: igraph, R>=2.10
URL: http://www.ebi.ac.uk/~iorio/BiRewire
License: GPL-3

Author(s)

Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio [cbt], Giuseppe Jurman [cbt].

Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des
Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547–579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science
Vol 132 pp 1115-1118, October 1960

birewire.analysis 3

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Techni-
cal Journal 29 (2): 147–160, MR 0035935.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform genera-
tion of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Csardi, G. and Nepusz, T (2006) The igraph software package for complex network research, Inter-
Journal, Complex Systems http://igraph.sf.net

birewire.analysis Analysis of Jaccard similarity trends across switching steps.

Description

This function performs a sequence of max.iter switching steps on the input bipartite graph g and
compute the Jaccard similarity between g (the initial network) and its rewired version each step
switching steps.

Usage

birewire.analysis(incidence, step=10, max.iter="n",accuracy=1,
verbose=TRUE,MAXITER_MUL=10,exact=F)

Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph
bipartite graph using the get.incidence)function;

step 10 (default): the interval (in terms of switching steps) at which the Jaccard index
between g and the its current rewired version is computed;

max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE
the number of successful switching steps). If equal to "n" then this number is
considered equal to the analytically derived lower bound presented in Gobbi et
al. (see References): N = e/2(1− d) ln (e− de) if exact is FALSE, N =
e(1− d)/2 ln (e− de) otherwise , where e is the number of edges of g and d
its edge density . This bound is much lower than the empirical one proposed in
Milo et al. 2003 (see References);

accuracy 1 (default) is the desired level of accuracy reflecting the average distance be-
tween the Jaccard index at the N-th step and its analytically derived fixed point;

verbose TRUE (default). When TRUE a progression bar is printed during computation;

MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the
program stops anyway after MAXITER_MUL*max.iter iterations;

exact FALSE (default). If TRUE the program performs max.iter successful swithcing
steps, otherwise the program will count also the not-performed swithcing steps;

http://igraph.sf.net

4 birewire.analysis

Details

This function performs max.iter switching steps (see references). In particular, at each step two
edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d)
(where a and c belong to the first class of nodes whereas b and d belong to the second one), with
a 6= c and b 6= d.
If the (a, d) and (c, b) edges are not already present in the current current version of g then (a, d)
and(c, b) replace (a, b) and (c, d).

At each step number of switching steps the function computes the Jaccard index between the
original graph g and its current version.

Value

A list containing a vector of Jaccard index values computed each (scores) switching steps, whose
length is equal to max.iter/step, and the analytically derived lower bound (N) of switching steps
to be performed by the switching algorithm in order to provide the revired version of g with the
maximal level of achievable randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des
Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547–579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science Vol
132 pp 1115-1118, October 1960

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Technical
Journal 29 (2): 147–160, MR 0035935.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of
random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

birewire.analysis.undirected 5

Examples

library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite(rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100,23),100
)))

##get the incidence matrix of g
m<-as.matrix(get.incidence(graph=g))

set parameters
step=1
max=100*length(E(g))

perform two different analysis using two different maximal number of switching steps
scores<-birewire.analysis(m,step,max)
scores2<-birewire.analysis(m,step,"n")

plot the Jaccard index scores across intervals of switching steps
plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,
type=l,xlab="Number of rewiring",ylab="Index value",ylim=c(0,1))

lines(x=step*seq(1:length(scores2$similarity_scores)),y= scores2$similarity_scores,
col="red")
legend(max*0.5,1, c("Jaccard index","Jaccard index with lower-bound N"), cex=0.9,
col=c("black","red"), lty=1:1,lwd=3)

birewire.analysis.undirected

Analysis of the randomness trend across switching steps in a general
undirected graph.

Description

This function performs a sequence of max.iter switching steps on the input undirected graph g and
compute the Jaccard similarity between g and its rewired version each step switching steps.

Usage

birewire.analysis.undirected(adjacency, step=10, max.iter="n",accuracy=1,
verbose=TRUE,MAXITER_MUL=10,exact=F)

6 birewire.analysis.undirected

Arguments

adjacency adjacency matrix of the undirected graph g (can be extracted from a igraph
graph using the get.adjacency) function;

step 10 (default): the interval (in terms of switching steps) at which the Jaccard index
between g and the its current rewired version is computed;

max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE
the number of successful switching steps). If equal to "n" then this number is
considered equal to the analytically derived lower bound presented in Gobbi
et al. (see References): N = e/(2d3 − 6d2 + 2d+ 2) ln (e− de) if exact is
FALSE, N = e(1− d)/2 ln (e− de) otherwise , where e is the number of edges
of g and d its edge density . This bound is much lower than the empirical one
proposed in Milo et al. 2003 (see References);

accuracy 1 (default) is the desired level of accuracy reflecting the average distance be-
tween the Jaccard index at the N-th step and its analytically derived fixed point.

verbose TRUE (default). When TRUE a progression bar is printed during computation.

MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the
program stops anyway after MAXITER_MUL*max.iter iterations;

exact FALSE (default). If TRUE the program performs max.iter successful swithcing
steps, otherwise the program will count also the not-performed swithcing steps;

Details

This function performs max.iter switching steps (see references). In particular, at each step two
edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d),
with a 6= c, b 6= d, a 6= d, b 6= c .
If the (a, d) and (c, b) (or (a, d) and (b, d)) edges are not already present in the current version of g
then (a, d) and (c, b) replace (a, b) and (c, d) (or (a, b) and (c, d) replace (a, c) and (b, d)). If both
of the configuarations are allowed, then one of them is randomly selected.

At each step switching steps the function computes the Jaccard index between the original graph
g and its current rewired version.

Value

A list containing a vector of Jaccard index values computed each (scores) switching steps whose
length is max.iter/step and the analytically derived lower bound (N) of switching steps to be
performed by the switching algorithm in order to provide the rewired version of g with maximal
achievable level of randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>
Special thanks to:
Davide Albanese

birewire.analysis.undirected 7

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching
Algorithm for undirected graphs.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des
Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547–579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science Vol
132 pp 1115-1118, October 1960

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Technical
Journal 29 (2): 147–160, MR 0035935.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of
random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

library(igraph)
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##get the incidence matrix of g
m<-as.matrix(get.adjacency(graph=g,sparse=FALSE))

set parameters
step=1000
max=100*length(E(g))

perform two different analysis using two different numbers of switching steps
scores<-birewire.analysis.undirected(m,step,max)
scores2<-birewire.analysis.undirected(m,step,"n")

plot the Jaccard index scores across intervals of switching steps
plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,
type=l,xlab="Number of rewiring",ylab="Index value",ylim=c(0,1))

lines(x=step*seq(1:length(scores2$similarity_scores)),y= scores2$similarity_scores,
col="red")
legend(max*0.5,1, c("Jaccard index","Jaccard index with lower-bound N"), cex=0.9,
col=c("black","red"), lty=1:1,lwd=3)

8 birewire.bipartite.from.incidence

birewire.bipartite.from.incidence

Converts an incidence matrix into a bipartite graph.

Description

This function creates an igraph bipartite graph from an incidence matrix.

Usage

birewire.bipartite.from.incidence(matrix,directed=FALSE,reverse=FALSE)

Arguments

matrix incidence matrix: an (n-by-m) binary matrix where rows correspond to vertices
in the frist class while columns correspond to vertices in the second one;

directed Logical, if TRUE a directed graph is created.

reverse Logical, if TRUE the edges will be directed from the nodes in the second class
to those in the first one.

Details

The function calls graph.bipartite of package igraph. See igraph documentation for more
details.

Value

Bipartite igraph graph.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>

References

Csardi, G. and Nepusz, T (2006) The igraph software package for complex network research, Inter-
Journal, Complex Systems url http://igraph.sf.net

Examples

library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite(rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100,23),100
)))

birewire.rewire 9

##gets the incidence matrix of g
m<-as.matrix(get.incidence(graph=g))

##rewire the current graph
m2=birewire.rewire.bipartite(m,100)

#create the rewired bipartite graph
g2<-birewire.bipartite.from.incidence(m2,TRUE,FALSE)

birewire.rewire Efficient rewiring of undirected graphs

Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial
undirected graph or its adjacency matrix.

Usage

birewire.rewire(adjacency, max.iter="n",accuracy=1,
verbose=TRUE,MAXITER_MUL=10,exact=F)

Arguments

adjacency An igraph undirected graph g or its adjacency matrix (can be extracted from g
using get.adjacency(g));

max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE
the number of successful switching steps). If equal to "n" then this number is
considered equal to the analytically derived lower bound presented in Gobbi
et al. (see References): N = e/(2d3 − 6d2 + 2d+ 2) ln (e− de) if exact is
FALSE, N = e(1− d)/2 ln (e− de) otherwise , where e is the number of edges
of g and d its edge density . This bound is much lower than the empirical one
proposed in Milo et al. 2003 (see References);

accuracy 1 (default) is the desired level of accuracy reflecting the average distance be-
tween the Jaccard index at the N-th step and its analytically derived fixed point;

verbose TRUE (default) boolean value. If TRUE print a processing bar during the rewiring
algorithm.

MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the
program stops anyway after MAXITER_MUL*max.iter iterations;

exact FALSE (default). If TRUE the program performs max.iter successful swith-
cing steps, otherwise the program will count also the not-performed swithcing
steps;

Details

Performs at most max.iter number of rewiring steps producing a rewired version of an initial
undirected graph.

10 birewire.rewire

Value

Adjacency matrix of the rewired graph.

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.
Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching
Algorithm for undirected graphs.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of
random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

library(igraph)
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##gets the incidence matrix of g
m<-as.matrix(get.adjacency(graph=g,sparse=FALSE))

sets parameters
step=1000
max=100*length(E(g))

##rewiring
m2=birewire.rewire(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-graph.adjacency(m2,mode="undirected")

birewire.rewire.bipartite 11

birewire.rewire.bipartite

Efficient rewiring of bipartite graphs

Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial
bipartite graph or its incidence matrix.

Usage

birewire.rewire.bipartite(incidence, max.iter="n",accuracy=1,verbose=TRUE,
MAXITER_MUL=10,exact=F)

Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph
bipartite graph using the get.incidence) function; or the entire bipartite igraph
graph

max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE
the number of successful switching steps). If equal to "n" then this number is
considered equal to the analytically derived lower bound presented in Gobbi et
al. (see References): N = e/2(1− d) ln (e− de) if exact is FALSE, N =
e(1− d)/2 ln (e− de) otherwise , where e is the number of edges of g and d
its edge density . This bound is much lower than the empirical one proposed in
Milo et al. 2003 (see References);

accuracy 1 (default) is the desired level of accuracy reflecting the average distance be-
tween the Jaccard index at the N-th step and its analytically derived fixed point;

verbose TRUE (default). When TRUE a progression bar is printed during computation.

MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the
program stops anyway after MAXITER_MUL*max.iter iterations;

exact FALSE (default). If TRUE the program performs max.iter successful swithcing
steps, otherwise the program will count also the not-performed swithcing steps.
;

Details

Main function of the package. It performs at most max.iter switching steps producing a rewired
version of an initial bipartite graph.

Value

Incidence matrix of the rewired graph.

12 birewire.rewire.bipartite.and.projections

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>
Davide Albanese

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of
random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite(rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100,23),100
)))

##gets the incidence matrix of g
m<-as.matrix(get.incidence(graph=g))

##rewiring
m2=birewire.rewire.bipartite(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-birewire.bipartite.from.incidence(m2,directed=TRUE,reverse=FALSE)

birewire.rewire.bipartite.and.projections

Analysis and rewiring function processing a bipartite graphs and its
two projections

Description

This function performs the same analysis of birewire.analysis but additionally it provides in
output a rewired version of the two networks resulting from the natural projections of the initial
graph, together with the corresponding Jaccard index trends.

birewire.rewire.bipartite.and.projections 13

Usage

birewire.rewire.bipartite.and.projections(graph,step=10,max.iter="n",
accuracy=1,verbose=TRUE,MAXITER_MUL=10)

Arguments

graph A bipartite graph g;

max.iter "n" (default) the number of successful switching steps to be performed. If equal
to "n" then this number is considered equal to the analytically derived lower
bound N = e(1− d)/2 ln (e− de) presented in Gobbi et al. (see References);

step 10 (default): the interval (in terms of switching steps) at which the Jaccard index
between g and the its current rewired version is computed;

accuracy 1 (default) is the desired level of accuracy reflecting the average distance be-
tween the Jaccard index at the N-th step and its analytically derived fixed point;

verbose TRUE (default) boolean value. If TRUE print a processing bar during the rewiring
algorithm.

MAXITER_MUL 10 (default).Since N indicates the number of successful switching steps, in or-
der to prevent a possible infinite loop the program stops anyway after MAX-
ITER_MUL*max.iter iterations ;

Details

See birewire.analysis for details.

Value

A list containing the three sequences of Jaccard index values (similarity_scores, similarity_scores.proj1,
similarity_scores.proj2) for the three resulting graphs respectively (rewired, rewired.proj1, rewired.proj2).
The first one is the rewired version of the initial graph g, while the second and the third one are
rewired versions of its natural projections.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

14 birewire.similarity

Examples

library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite(rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100,23),100
)))
##gets the incidence matrix of g
m<-as.matrix(get.incidence(graph=g))

rewires g and its projections
result=birewire.rewire.bipartite.and.projections(g,step=10,max.iter="n",accuracy=1)

birewire.similarity Compute the Jaccard similarity index between two binary matrices
with the same number of non-null entries and the sam row- and
column-wise sums.

Description

Compute the Jaccard similarity index between two binary matrices with the same number of non-
null entries and the sam row- and column-wise sums.

Usage

birewire.similarity(m1,m2)

Arguments

m1 First matrix;

m2 Second matrix.

Details

The Jaccard index between two sets M and N is defined as:

|M ∪N |/|M ∩N |
With M and N binary matrices, the Jaccard index is computed as:∑

Ni,j ∧Mi,j∑
Ni,j ∨Mi,j

.

The Jaccard index ranges between 0 and 1.

BRCA_binary_matrix 15

Value

Returns the Jaccard similarity index between the two matrices

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi <gobbi.andrea@mail.com>

Examples

library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite(rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100,23),100
)))
g2=birewire.rewire.bipartite(g)

birewire.similarity(get.incidence(g,sparse=FALSE),get.incidence(g2,sparse=FALSE))

BRCA_binary_matrix TCGA Brest Cancer data

Description

Breast cancer samples and their respective mutations downloaded from the Cancer Cancer Genome
Atlas (TCGA), used in Gobbi et al.. Germline mutations were filtered out of the list of reported mu-
tations; synonymous mutations and mutations identified as benign and tolerated were also removed
from the dataset. The bipartite graph resulting when considering this matrix as an incidence matrix
has nr = 757, nc = 9757, e = 19758 for an edge density equal to 0.27%.

Usage

data(BRCA_binary_matrix)

Source

http://tcga.cancer.gov/dataportal/

References

Gobbi, A. and Iorio, F. and Dawson, K. J. and Wedge, D. C. and Tamborero, D. and Alexandrov,
L. B. and Lopez-Bigas, N. and Garnett, M. J. and Jurman, G. and Saez-Rodriguez, J. (2014) Fast
randomization of large genomic datasets while preserving alteration counts Bioinformatics 2014
30 (17): i617-i623 doi: 10.1093/bioinformatics/btu474.

Index

∗Topic bipartite graph, incidece
matrix

birewire.bipartite.from.incidence,
8

∗Topic bipartite graph, projection,
rewire

birewire.rewire.bipartite.and.projections,
12

∗Topic bipartite graph, rewire
birewire.rewire.bipartite, 11

∗Topic datasets
BRCA_binary_matrix, 15

∗Topic package
BiRewire-package, 2

∗Topic rewire, bipartite graph
birewire.analysis, 3

∗Topic rewire, undirected graph
birewire.analysis.undirected, 5

∗Topic similarity,jaccard
birewire.similarity, 14

∗Topic undirected graph, rewire
birewire.rewire, 9

BiRewire (BiRewire-package), 2
BiRewire-package, 2
birewire.analysis, 3, 12, 13
birewire.analysis.undirected, 5
birewire.bipartite.from.incidence, 8
birewire.rewire, 9
birewire.rewire.bipartite, 11
birewire.rewire.bipartite.and.projections,

12
birewire.similarity, 14
BRCA_binary_matrix, 15

16

	BiRewire-package
	birewire.analysis
	birewire.analysis.undirected
	birewire.bipartite.from.incidence
	birewire.rewire
	birewire.rewire.bipartite
	birewire.rewire.bipartite.and.projections
	birewire.similarity
	BRCA_binary_matrix
	Index

