To install this package, start R and enter:
source("http://bioconductor.org/biocLite.R") biocLite("GSAR")
In most cases, you don't need to download the package archive at all.
Bioconductor version: 3.0
Gene set analysis using specific alternative hypotheses. Tests for differential expression, scale and net correlation structure.
Author: Yasir Rahmatallah <yrahmatallah at uams.edu>, Galina Glazko <gvglazko at uams.edu>
Maintainer: Yasir Rahmatallah <yrahmatallah at uams.edu>, Galina Glazko <gvglazko at uams.edu>
Citation (from within R,
enter citation("GSAR")
):
To install this package, start R and enter:
source("http://bioconductor.org/biocLite.R") biocLite("GSAR")
To view documentation for the version of this package installed in your system, start R and enter:
browseVignettes("GSAR")
R Script | Gene Set Analysis in R -- the GSAR Package | |
Reference Manual | ||
Text | NEWS |
biocViews | DifferentialExpression, Software, StatisticalMethod |
Version | 1.0.0 |
In Bioconductor since | BioC 3.0 (R-3.1) |
License | GPL (>=2) |
Depends | R (>= 3.0.1), igraph (>= 0.7.0) |
Imports | |
LinkingTo | |
Suggests | MASS, GSVAdata, ALL, tweeDEseqCountData, GSEABase, annotate, org.Hs.eg.db, Biobase, genefilter, hgu95av2.db, edgeR, BiocStyle |
SystemRequirements | |
Enhances | |
URL | |
Depends On Me | |
Imports Me | |
Suggests Me | |
Build Report |
Follow Installation instructions to use this package in your R session.
Package Source | GSAR_1.0.0.tar.gz |
Windows Binary | GSAR_1.0.0.zip |
Mac OS X 10.6 (Snow Leopard) | GSAR_1.0.0.tgz |
Mac OS X 10.9 (Mavericks) | GSAR_1.0.0.tgz |
Browse/checkout source | (username/password: readonly) |
Package Downloads Report | Download Stats |
Common Bioconductor workflows include:
Post questions about Bioconductor packages to our mailing lists. Read the posting guide before posting!