
Machine learning techniques

available in pRoloc

Laurent Gatto∗

Computational Proteomics Unit

University of Cambridge

April 12, 2014

Contents

1 Introduction 2

2 Data sets 2

3 Unsupervised machine learning 3

4 Supervised machine learning 3

4.1 Algorithms used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Default analysis scheme . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Customising model parameters . . . . . . . . . . . . . . . . . . . . . . 7

5 Comparison of different classifiers 7

6 Semi-supervised machine learning and novelty detection 8

∗lg390@cam.ac.uk

1

mailto:lg390@cam.ac.uk


NB This document is currently under construction; please see the pRoloc tutorial

for details.

TODO Define nomenclature

1 Introduction

For a general practical introduction to pRoloc, readers are referred to the tutorial,

available using vignette("pRoloc-tutorial", package = "pRoloc"). The fol-

lowing document provides a overview of the algorithms available in the package.

The respective section describe unsupervised machine learning (USML), supervised

machine learning (SML), and semi-supervised machine learning (SSML) as imple-

mented in the novelty detection algorithm.

2 Data sets

We provide 16 test data sets in the pRolocdata packagethat can be readily used

with pRoloc. The data set can be listed with pRolocdata and loaded with the data

function. Each data set, including its origin, is individually documented.

The data sets are distributed as MSnSet instances. Briefly, these are dedicated

containers for quantitation data as well as feature and sample meta-data. More de-

tails about MSnSets are available in the pRoloc tutorial and in the MSnbase package,

that defined the class.

> library("pRolocdata")

> data(tan2009r1)

> tan2009r1

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: X114 X115 X116 X117

varLabels: Fractions

varMetadata: labelDescription

featureData

featureNames: FBgn0001104 FBgn0000044 ...

FBgn0001215 (888 total)
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fvarLabels: Protein.ID Flybase.Symbol ...

pd.markers (13 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

pubMedIds: 19317464

Annotation:

- - - Processing information - - -

MSnbase version: 1.11.3

3 Unsupervised machine learning

Unsupervised machine learning refers to clustering, i.e. finding structure in a quan-

titative, generally multi-dimensional data set of unlabelled data.

Currently, unsupervised clustering facilities are available through the plot2D func-

tion and the MLInterfaces package Carey et al.. The former takes an MSnSet instance

and represents the data on a scatter plot along the first two principal components.

Arbitrary feature meta-data can be represented using different colours and point

characters. The reader is referred to the manual page available through ?plot2D for

more details and examples.

pRoloc also implements a MLean method for MSnSet instances, allowing to use the

relevant infrastructure with the organelle proteomics framework. Although provides

a common interface to unsupervised and numerous supervised algorithms, we refer

to the pRoloc tutorial for its usage to several clustering algorithms.

4 Supervised machine learning

Supervised machine learning refers to a broad family of classification algorithms.

The algorithms learns from a modest set of labelled data points called the training

data. Each training data example consists of a pair of inputs: the actual data,

generally represented as a vector of numbers and a class label, representing the

membership to exactly 1 of multiple possible classes. When there are only two

possible classes, on refers to binary classification. The training data is used to

construct a model that can be used to classifier new, unlabelled examples. The

model takes the numeric vectors of the unlabelled data points and return, for each

of these inputs, the corresponding mapped class.
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4.1 Algorithms used

k-nearest neighbour Function knn from package class. For each row of the test

set, the k nearest (in Euclidean distance) training set vectors are found, and the

classification is decided by majority vote over the k classes, with ties broken at

random. This is a simple algorithm that is often used as baseline classifier.

Partial least square DA Function plsda from package caret. Partial least square

discriminant analysis is used to fit a standard PLS model for classification.

Support vector machine A support vector machine constructs a hyperplane (or

set of hyperplanes for multiple-class problem), which are then used for classification.

The best separation is defined as the hyperplane that has the largest distance (the

margin) to the nearest data points in any class, which also reduces the classification

generalisation error. To assure liner separation of the classes, the data is transformed

using a kernel function into a high-dimensional space, permitting liner separation

of the classes.

pRoloc makes use of the functions svm from package e1071 and ksvm from kernlab.

Artificial neural network Function nnet from package nnet. Fits a single-hidden-

layer neural network, possibly with skip-layer connections.

Naive Bayes Function naiveBayes from package e1071. Naive Bayes classifier

that computes the conditional a-posterior probabilities of a categorical class variable

given independent predictor variables using the Bayes rule. Assumes independence

of the predictor variables, and Gaussian distribution (given the target class) of metric

predictors.

Random Forest Function randomForest from package randomForest.

Chi-square Assignment based on squared differences between a labelled marker

and a new feature to be classified. Canonical protein correlation profile method

(PCP) uses squared differences between a labelled marker and new features. In

(Andersen et al., 2003), χ2 is defined as the [summed] squared deviation of the nor-

malized profile [from the marker] for all peptides divided by the number of data points,

i.e. χ2 =
∑n

i=1(xi−mi)
2

n
, whereas (Wiese et al., 2007) divide by the value the squared

value by the value of the reference feature in each fraction, i.e. χ2 =
∑n

i=1
(xi−mi)

2

mi
,

where xi is normalised intensity of feature x in fraction i, mi is the normalised in-

tensity of marker m in fraction i and n is the number of fractions available. We will

use the former definition.
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PerTurbo From Courty et al. (2011): PerTurbo, an original, non-parametric and

efficient classification method is presented here. In our framework, the manifold of

each class is characterised by its Laplace-Beltrami operator, which is evaluated with

classical methods involving the graph Laplacian. The classification criterion is es-

tablished thanks to a measure of the magnitude of the spectrum perturbation of this

operator. The first experiments show good performances against classical algorithms

of the state-of-the-art. Moreover, from this measure is derived an efficient policy to

design sampling queries in a context of active learning. Performances collected over

toy examples and real world datasets assess the qualities of this strategy.

The PerTurbo implementation comes from the pRoloc packages.

4.2 Default analysis scheme

We present below a typical classification using pRoloc. The analysis typically consists

of two steps. The first one is to optimise the classifier parameters to be used for

training and testing (see beginning of this section). A range of parameters are tested

using the labelled data, for which the labels are known. For each set of parameters,

we hide the labels of a subset of labelled data and use the other part to train a model

and apply in on the data with hidden labels. The comparison of the estimated and

expected labels enables to assess the validity of the model and hence the adequacy

if the parameters. Once adequate parameters have been identified, they are used to

infer a model on the complete test set and use of to infer the labels of the unlabelled

examples.

Parameter optimisation

Algorithmic performance is estimated using a stratified 20/80 partitioning. The

80% partitions are subjected to 5-fold cross-validation in order to optimise free

parameters via a grid search, and these parameters are then applied to the remaining

20%. The procedure is repeated n = 100 times to sample n accuracy metrics (see

below) values using n, possibly different, optimised parameters for evaluation.

Models accuracy is evaluated using the F1 score, F1 = 2 precision×recall
precision+recall

, calculated

as the harmonic mean of the precision (precision = tp
tp+fp

, a measure of exactness

– returned output is a relevant result) and recall (recall = tp
tp+fn

, a measure of

completeness – indicating how much was missed from the output). What we are

aiming for are high generalisation accuracy, i.e high F1, indicating that the marker

proteins in the test data set are consistently correctly assigned by the algorithms.

The result of the optimisation procedure are stored in an GenRegRes object that

can be inspected, plotted and best parameter pairs can be extracted.

For a given algorithm alg, the corresponding parameter optimisation function

is names algOptimisation or, equivalently, algOptimization. See table 1 for

5



details. A description of each of the respective model parameters is provided in the

optimisation function manuals, available through ?algOptimisation.

> params <- svmOptimisation(tan2009r1, times = 10, xval = 5,

+ verbose = FALSE)

> params

Object of class "GenRegRes"

Algorithm: svm

Hyper-parameters:

cost: 0.0625 0.125 0.25 0.5 1 2 4 8 16

sigma: 0.01 0.1 1 10 100 1000

Design:

Replication: 10 x 5-fold X-validation

Partitioning: 0.2/0.8 (test/train)

Results

macro F1:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.889 0.942 1.000 0.970 1.000 1.000

best sigma: 0.1 1 0.01

best cost: 1 8 0.5 4

Classification

> tan2009r1 <- svmClassification(tan2009r1, params)

> tan2009r1

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: X114 X115 X116 X117

varLabels: Fractions

varMetadata: labelDescription

featureData

featureNames: FBgn0001104 FBgn0000044 ...

FBgn0001215 (888 total)

fvarLabels: Protein.ID Flybase.Symbol ...

svm.scores (15 total)
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fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

pubMedIds: 19317464

Annotation:

- - - Processing information - - -

Performed svm prediction (sigma=0.1 cost=1) Sat Apr 12 00:23:22 2014

MSnbase version: 1.11.3

4.3 Customising model parameters

Below we illustrate how to weight different classes according to the number of la-

belled instances, were large sets are down weighted. This strategy can help with

imbalanced designs.

> w <- table(fData(dunkley2006)$markers)

> w <- 1/w[-5]

> wpar <- svmOptimisation(dunkley2006, class.weights = w)

> wres <- svmClassification(dunkley2006, pw, class.weights = w)

parameter optimisation classification algorithm package

knnOptimisation knnClassification nearest neighbour class
ksvmOptimisation ksvmClassification support vector machine kernlab
nbOptimisation nbClassification naive bayes e1071
nnetOptimisation nnetClassification neural networks nnet
perTurboOptimisation perTurboClassification PerTurbo pRoloc
plsdaOptimisation plsdaClassification partial least square caret
rfOptimisation rfClassification random forest randomForest
svmOptimisation svmClassification support vector machine e1071

Table 1: Supervised ML algorithm available in pRoloc.

5 Comparison of different classifiers

Several supervised machine learning algorithms have already been applied to or-

ganelle proteomics data classification: partial least square discriminant analysis in

Dunkley et al. (2006); Tan et al. (2009), support vector machines (SVMs) in Trot-

ter et al. (2010), random forest in Ohta et al. (2010), neural networks in Tardif

et al. (2012), naive Bayes Nikolovski et al. (2012). In our HUPO 2011 poster (see

vignette("HUPO 2011 poster", package = "pRoloc")), we show that different

classification algorithms provide very similar performance. We have extended this
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comparison on various datasets distributed in the pRolocdata package. On figure 1,

we illustrate how different algorithms reach very similar performances on most of

our test datasets.
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Figure 1: Comparison of classification performances of several contemporary classifica-
tion algorithms on data from the pRolocdata package.

6 Semi-supervised machine learning and novelty

detection

The phenoDisco algorithm is a semi-supervised novelty detection method by Breckels

et al. (2013) (figure 2). It uses the labelled (i.e. markers, noted DL) and unlabelled

(i.e. proteins of unknown localisation, noted DU) sets of the input data. The

algorithm is repeated N times (the code argument in the phenoDisco function). At

each iteration, each organelle class Di
L and the unlabelled complement are clustered

using Gaussian mixture modelling. While unlabelled members that systematically

cluster with Di
L and pass outlier detection are labelled as new putative members of

class i, any example of DU which are not merged with any any of the Di
L and are

consistently clustered together throughout the N iterations are considered members

of a new phenotype.
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Input data:
D = (DL, DU )

Phenotype modeling:
Select Di

L and model
F = Di

L ∪ DU using a
GMM (cluster number
estimate using BIC).

Get candidats: Members
of DU clustered with
Di

L are considered
candidats of class i.

Each candidate is tested
against an outlier

detection algorithm.

Candidates classified
as members of i are

merged with Di
L. Those

which are rejected
are returned to DU

Update classes: ex-
amples in DU that are
consistently accepted

into a single class i are
labelled as members of Di

L.

New phenotype: Any
example of DU not merged

with any Di
L and which

are consistenlty clustered
together throughout
the N iterations are
considered members
of a new phenotype.

Output: Return
unassigned examples,

new Di
L members

and new phenotypes.

next class i

all classes considered

Repeat N times

Figure 2: The PhenoDisco iterative algorithm.
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Session information

All software and respective versions used to produce this document are listed below.

� R version 3.1.0 (2014-04-10), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,
utils

� Other packages: AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0,
BiocParallel 0.6.0, GenomeInfoDb 1.0.0, MASS 7.3-31, MLInterfaces 1.44.0,
MSnbase 1.12.0, Rcpp 0.11.1, annotate 1.42.0, cluster 1.15.2, codetools 0.2-8,
e1071 1.6-3, genefilter 1.46.0, ggplot2 0.9.3.1, knitr 1.5, mzR 1.10.0,
pRoloc 1.4.0, pRolocdata 1.0.7, rda 1.0.2-2, rpart 4.1-8, sfsmisc 1.0-25,
xtable 1.7-3

� Loaded via a namespace (and not attached): BBmisc 1.5, BatchJobs 1.2,
BiocInstaller 1.14.0, DBI 0.2-7, FNN 1.1, IRanges 1.21.45,
KernSmooth 2.23-12, MSBVAR 0.7-2, Matrix 1.1-3, RColorBrewer 1.0-5,
RSQLite 0.11.4, XML 3.98-1.1, affy 1.42.0, affyio 1.32.0, brew 1.0-6,
car 2.0-19, caret 6.0-24, class 7.3-10, coda 0.16-1, colorspace 1.2-4,
dichromat 2.0-0, digest 0.6.4, doParallel 1.0.8, evaluate 0.5.3, fail 1.2,
foreach 1.4.2, formatR 0.10, gdata 2.13.3, grid 3.1.0, gtable 0.1.2,
gtools 3.3.1, highr 0.3, impute 1.38.0, iterators 1.0.7, kernlab 0.9-19,
labeling 0.2, lattice 0.20-29, limma 3.20.0, lpSolve 5.6.7, mboost 2.2-3,
mclust 4.3, munsell 0.4.2, mzID 1.2.0, nnet 7.3-8, pcaMethods 1.54.0,
plyr 1.8.1, preprocessCore 1.26.0, proto 0.3-10, proxy 0.4-12,
randomForest 4.6-7, reshape2 1.2.2, sampling 2.6, scales 0.2.3,
sendmailR 1.1-2, splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7,
tools 3.1.0, vsn 3.32.0, zlibbioc 1.10.0
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