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Abstract

FlipFlop implements a fast method for de novo transcript discovery and abundance
estimation from RNA-Seq data. It differs from Cufflinks by simultaneously performing
the transcript and quantitation tasks using a penalized maximum likelihood approach,
which leads to improved precision/recall. Other softwares taking this approach have an
exponential complexity in the number of exons in the gene. We use a novel algorithm
based on network flow formalism, which gives us a polynomial runtime. In practice,
FlipFlop was shown to outperform penalized maximum likelihood based softwares in
terms of speed and to perform transcript discovery in less than 1/2 second even for
large genes.

1 Introduction

Over the past decade, quantitation of mRNA molecules in a cell population has become
a popular approach to study the effect of several factors on cellular activity. Typical
applications include the detection of genes whose expression varies between two or more
populations of samples (differential analysis), classification of samples based on gene ex-
pression [van’t Veer et al., 2002], and clustering, which consists of identifying a grouping
structure in a sample set [Perou et al., 2000]. While probe-based DNA microarray tech-
nologies only allow to quantitate mRNA molecules whose sequence is known in advance,
the recent development of deep sequencing has removed this restriction. More precisely,
RNA-Seq technologies [Mortazavi et al., 2008] allow the sequencing of cDNA molecules
obtained by reverse transcription of RNA molecules present in the cell. Consequently, any
transcript can be sequenced and therefore quantitated, even though its sequence might
not be available a priori for designing a specific probe. In addition to facilitating the
study of non-coding parts of known genomes and organisms whose genome has not been
sequenced [Mortazavi et al., 2010], RNA-Seq technologies facilitate the quantitation of al-
ternatively spliced genes. Genes in eukaryote cells indeed contain a succession of exon and
intron sequences. Transcription results in a pre-mRNA molecule from which most introns
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are removed and some exons are retained during a processing step called RNA splicing. It is
estimated that more than 95% of multiexonic genes are subject to alternative splicing [Pan
et al., 2008]: the set of exons retained during splicing can vary, resulting for the same gene
in different versions of the mRNA, referred to as transcripts or isoforms. Identification and
quantification of isoforms present in a sample is of outmost interest because different iso-
forms can later be translated as different proteins. Detection of isoforms whose presence or
quantity varies between samples may lead to new biomarkers and highlight novel biological
processes invisible at the gene level.

Sequencing technologies are well suited to transcript quantitation as the read density
observed along the different exons of a gene provide information on which alternatively
spliced mRNAs were expressed in the sample, and in which proportions. Since the read
length is typically smaller than the mRNA molecule of a transcript, identifying and quan-
tifying the transcripts is however difficult: an observed read mapping to a particular exon
may come from an mRNA molecule of any transcript containing this exon. Some meth-
ods consider that the set of expressed isoforms [Jiang and Wong, 2009] or a candidate
superset [Huang et al., 2012, Xing et al., 2006] is known in advance, in which case the
only problem is to estimate their expression. However little is known in practice about the
possible isoforms of genes, and restricting oneself to isoforms that have been described in
the literature may lead to missing new ones.

Two main paradigms have been used so far to estimate expression at the transcript
level while allowing de novo transcript discovery. On the one hand, the Cufflinks software
package [Trapnell et al., 2010] proceeds in two separate steps to identify expressed isoforms
and estimate their abundances. It first estimates the list of alternatively spliced transcripts
by building a small set of isoforms containing all observed exons and exon junctions. In a
second step, the expression of each transcript is quantified by likelihood maximization given
the list of transcripts. Identification and quantification are therefore done independently.
On the other hand, a second family of methods [Xia et al., 2011, Li et al., 2011b, Bohnert
and Rätsch, 2010, Li et al., 2011a, Mezlini et al., 2013] jointly estimates the set of transcripts
and their expression using a penalized likelihood approach. These methods model the
likelihood of the expression of all possible transcripts, possibly after some preselection, and
the penalty encourages sparse solutions that have a few expressed transcripts.

The two-step approach of Cufflinks [Trapnell et al., 2010] is reasonably fast, but does
not exploit the observed read density along the gene, which can be a valuable information
to identify the set of transcripts. This is indeed a conclusion drawn experimentally using
methods from the second paradigm [see Xia et al., 2011, Li et al., 2011b, Bohnert and
Rätsch, 2010, Li et al., 2011a, Mezlini et al., 2013].

To summarize, the first paradigm is fast but can be less statistically powerful than
the second one in some cases, and the second paradigm should always be powerful but
becomes untractable for genes with many exons. The contribution of this paper is to
allow methods of the second family to run efficiently without prefiltering the set of isoform
candidates, although they solve a non-smooth optimization problem over an exponential
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number of variables. To do so, we show that the penalized likelihood maximization can be
reformulated as a convex cost network flow problem, which can be solved efficiently [Ahuja
et al., 1993, Bertsekas, 1998, Mairal and Yu, 2012].

For more detail about the statistical model and method, see Bernard et al. [2013] and
references therein.

2 Software features

FlipFlop takes aligned reads in sam format and offers the following functionalities:

Transcript discovery FlipFlop estimates the set of transcripts which are most likely to
be expressed according to the model described in Bernard et al. [2013].

Abundance estimation The implemented method simultaneously estimates the abun-
dance of the expressed transcripts in FPKM.

3 Case studies

We now show on a simple one gene example how FlipFlop can be used to estimate which
transcripts are expressed in an RNA-Seq experiment, and what are the transcript abun-
dances.

3.1 Loading the library and the data

We load the FlipFlop package by typing or pasting the following codes in R command line:

> library(flipflop)

A .sam data file can be loaded by the following command:

> data.file <- system.file(file.path('extdata', 'vignette-sam.txt'), package='flipflop')

These toy data correspond to the alignments of 1000 single-end reads of 125 base-pair
long against the hg19 reference genome, available on the UCSC genome browser 1. The
reads have been simulated with the RNASeqReadSimulator 2 from two annotated human
transcripts (see reference ID uc001alm.1 and uc001aln.3 in the UCSC genome browser).

In a general context data.file should simply be the path to the .sam alignement file.
FlipFlop pre-processing of the reads (exctracting exon boundaries, junctions and asso-

ciated counts), is based on the processsam function from the isolasso software. More
information about the isolasso software and the processsam options can be found at the
following link: http://alumni.cs.ucr.edu/~liw/isolasso.html.

1http://genome.ucsc.edu
2http://alumni.cs.ucr.edu/ liw/rnaseqreadsimulator.html
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Note that the .sam file has to be sorted according to chromosome name and starting
position. In Unix or Mac systems, it can be done with the command sort -k 3,3 -k

4,4n in.sam > in.sorted.sam.

3.2 Estimation

In order to estimate the set of expressed isoforms and their abundances, we run the
flipflop function on the .sam file. By default the reads are considered as single-end
and no annotation file is necessary. If you have paired-end reads you can use the op-
tion paired=TRUE and give the mean fragment size (option frag) and standard deviation
(option std) of your RNA-seq library.

3.2.1 without annotation

> # The minimum number of clustered reads

> # to consider a cluster of reads as a gene (default 40):

> min.read <- 50

> # The maximum number of isoforms given

> # during regularization path (default 10):

> max.iso <- 7

> ff.res <- flipflop(data.file=data.file,

+ out.file='FlipFlop_output.gtf',

+ minReadNum=min.read,

+ max_isoforms=max.iso)

> names(ff.res)

[1] "transcripts" "abundancesFPKM" "expected.counts" "timer"

The flipflop function outputs a list whose important features are lists transcripts,
abundancesFPKM and expected.counts. Each element of these lists corresponds to a
different gene in the sam file.

The transcripts list is a GRangesList object from the GenomicRanges package [Aboy-
oun et al.]. More information concerning manipulations of this object can be found in
[Aboyoun et al.]. Each element of the list is a GRanges object that describes the struc-
ture of the transcripts that are found to be expressed. Rows of the object correspond to
exons. On the left hand side each exon is described by the gene name, the chromosome,
its genomic position on the chromosome and the strand. Transcripts are described on the
right hand side. Every transcript is a binary vector where an exon is labelled by 1 if it
is included in the transcript. Elements of abundancesFPKM are vector whose length is the
number of isoforms listed in the transcripts object. Each element of the vector is the
estimated abundance in FPKM of the corresponding transcript. expected.counts has the
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same structure whereas it corresponds to the expected fragment counts for each transcript
(ie the expected number of mapped fragments by transcript).

> transcripts <- ff.res$transcripts[[1]]

> abundancesFPKM <- ff.res$abundancesFPKM[[1]]

> expected.counts <- ff.res$expected.counts[[1]]

> print(transcripts)

GRanges with 7 ranges and 3 metadata columns:

seqnames ranges strand | read.count transcript.V1

<Rle> <IRanges> <Rle> | <numeric> <numeric>

Inst1 chr1 [4715106, 4715515] + | 147 1

Inst1 chr1 [4771960, 4772760] + | 382 1

Inst1 chr1 [4829913, 4830001] + | 85 1

Inst1 chr1 [4832340, 4832586] + | 137 1

Inst1 chr1 [4834487, 4834619] + | 88 1

Inst1 chr1 [4837461, 4837845] + | 41 0

Inst1 chr1 [4842605, 4843848] + | 339 1

transcript.V2

<numeric>

Inst1 1

Inst1 1

Inst1 1

Inst1 1

Inst1 1

Inst1 1

Inst1 0

---

seqlengths:

chr1

NA

> print(abundancesFPKM)

[1] 278210.4 114046.5

> print(expected.counts)

[1] 777.3198 220.6800

Our example sam file contains a gene with 7 exons. Two transcripts were found to
be expressed, with respective abundances 278210.2 and 114046.3 FPKM. The first of the
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expressed isoforms contains all exons except the exon 6, the second isoform does not contain
exon 7.

The output is also stored in a standart gtf format file. For more details about the
GTF format visit http://mblab.wustl.edu/GTF2.html. In the so-called attributes col-
umn, FPKM corresponds to abundances in FPKM unit while EXP-COUNT corresponds to the
expected fragment counts.

3.2.2 with annotation

The flipflop function allows as well the use of an annotated transcript file in bed format
to settle a priori the exon boundaries. More precisely, the bed file must be a bed12 file with
12 columns. It also has to be sorted according to chromosome name and starting position
of isoforms.

A .bed annotation file can be loaded by the following command:

> annot.file <- system.file(file.path('extdata', 'vignette-annot.bed.txt'),

+ package='flipflop')

> ff.res.annot <- flipflop(data.file=data.file,

+ out.file='FlipFlop_output.gtf',

+ annot.file=annot.file)

> transcripts.annot <- ff.res.annot$transcripts[[1]]

> print(transcripts.annot)

GRanges with 13 ranges and 3 metadata columns:

seqnames ranges strand | read.count transcript.V1

<Rle> <IRanges> <Rle> | <numeric> <numeric>

Inst1 chr1 [4715105, 4715515] + | 147 1

Inst1 chr1 [4715515, 4771960] + | 0 0

Inst1 chr1 [4771960, 4772760] + | 382 1

Inst1 chr1 [4772760, 4829913] + | 0 0

Inst1 chr1 [4829913, 4830001] + | 85 1

... ... ... ... ... ... ...

Inst1 chr1 [4834487, 4834619] + | 88 1

Inst1 chr1 [4834619, 4837461] + | 0 0

Inst1 chr1 [4837461, 4837855] + | 42 0

Inst1 chr1 [4837855, 4842605] + | 0 0

Inst1 chr1 [4842605, 4843851] + | 339 1

transcript.V2

<numeric>

Inst1 1
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Inst1 0

Inst1 1

Inst1 0

Inst1 1

... ...

Inst1 1

Inst1 0

Inst1 1

Inst1 0

Inst1 0

---

seqlengths:

chr1

NA

Two transcripts are again found to be expressed. The number of exons and the positions
on the genome are not the same as in the previous example because boundaries now include
exons and introns from the annotation.

3.3 Read the output GTF file

The transcripts which are found to be expressed are stored in a gtf format file. The
transcript information from the GTF file can be easily extracted using the makeTran-

scriptDbFromGFF function from the GenomicFeatures package [Carlson et al.].
The following example shows (when the GenomicFeatures is installed) how to create a

TxDb object from the GTF file, and several accessor functions allow to manipulate it. More
information can be found in [Carlson et al.]. For instance the exonsBy function extracts
the list of exons for each gene or transcript:

> if(require(GenomicFeatures)){

+ txdb <- makeTranscriptDbFromGFF(file='FlipFlop_output.gtf',

+ format='gtf',

+ exonRankAttributeName='exon_number')

+ # List of exons for each transcript:

+ exonsBy(txdb, by='tx')

+ }

GRangesList of length 2:

$1

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>
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[1] chr1 [4715105, 4715514] + | 1 <NA> 1

[2] chr1 [4771960, 4772759] + | 2 <NA> 2

[3] chr1 [4829913, 4830000] + | 3 <NA> 3

[4] chr1 [4832340, 4832585] + | 4 <NA> 4

[5] chr1 [4834487, 4834618] + | 5 <NA> 5

[6] chr1 [4837461, 4837854] + | 6 <NA> 6

$2

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

[1] chr1 [4715105, 4715514] + | 1 <NA> 1

[2] chr1 [4771960, 4772759] + | 2 <NA> 2

[3] chr1 [4829913, 4830000] + | 3 <NA> 3

[4] chr1 [4832340, 4832585] + | 4 <NA> 4

[5] chr1 [4834487, 4834618] + | 5 <NA> 5

[6] chr1 [4842605, 4843851] + | 7 <NA> 6

---

seqlengths:

chr1

NA

4 Session Information

R version 3.1.1 (2014-07-10)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:
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[1] GenomicFeatures_1.16.2 AnnotationDbi_1.26.0 Biobase_2.24.0

[4] GenomicRanges_1.16.4 GenomeInfoDb_1.0.2 IRanges_1.22.10

[7] BiocGenerics_0.10.0 flipflop_1.2.2

loaded via a namespace (and not attached):

[1] BBmisc_1.7 BSgenome_1.32.0 BatchJobs_1.3

[4] BiocParallel_0.6.1 Biostrings_2.32.1 DBI_0.3.0

[7] GenomicAlignments_1.0.6 Matrix_1.1-4 RCurl_1.95-4.3

[10] RSQLite_0.11.4 Rsamtools_1.16.1 XML_3.98-1.1

[13] XVector_0.4.0 biomaRt_2.20.0 bitops_1.0-6

[16] brew_1.0-6 checkmate_1.4 codetools_0.2-9

[19] digest_0.6.4 fail_1.2 foreach_1.4.2

[22] grid_3.1.1 iterators_1.0.7 lattice_0.20-29

[25] rtracklayer_1.24.2 sendmailR_1.1-2 stats4_3.1.1

[28] stringr_0.6.2 tools_3.1.1 zlibbioc_1.10.0
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