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1 Overview

cnvGSA is an R package meant to facilitate gene-set analysis of (rare) copy number variants
(CNVs).

Known gene-sets are tested for prevalence of rare variants in case vs. control subjects. When-
ever a subject has at least one gene in a gene-set affected by a rare variant, a perturbation
count of 1 is assigned to the (subject, gene-set) pair; for each gene-set, subject counts are
tested vs. control counts using the Fisher Exact Test (FET). Significant gene-sets will have
a significantly high count in cases compared to controls. Statistical reports on CNV burden
in cases and controls are also generated.

Note: this analysis requires that subjects be unrelated and that case/control cohorts be
matched by sex, age, ethnicity, and other potential confounders (such as platform and CNV
detection methods). In addition, only rare CNVs should be present. The definition of ‘rare’
is typically based on CNV frequency in the study subjects or on a larger data-set of inde-
pendent controls that are used to remove putative common regions – or on a combination of
both techniques. For more details, see [2] and [3].

2 Workflow outline

The general procedure for performing a CNV gene-set analysis involves loading CNV and
gene-set data, setting filters and parameters, running the analysis, and reviewing the results.
To facilitate these operations, the package provides "CnvGSAInput", an S4 class acting as a
simple container data structure with slots for each of these required inputs:

> library("cnvGSA")

> slotNames("CnvGSAInput")

[1] "cnvData" "gsData" "geneData" "params"

The input slots should hold the following:

� cnvData - CNV data

� gsData - Gene-set data

� geneData - Gene annotations (symbols and descriptive names)

� params - Test parameters

To ease the discussion here, a pre-built input object has been saved for convenience in the
companion data package for this vignette:

> library("cnvGSAdata")

> data("cnvGSA_input_example")

> ls()
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[1] "input"

> class(input)

[1] "CnvGSAInput"

attr(,"package")

[1] "cnvGSA"

> slotNames(input)

[1] "cnvData" "gsData" "geneData" "params"

Each of the slots can be accessed using an accessor function of the same name (e.g. cnv-

Data(input) gets or sets cnvData, gsData(input) gets or sets gsData, etc.).

The input object is used with cnvGSA’s main function, cnvGSAFisher():

� cnvGSAFisher( input ) - Performs a gene-set association test of case vs. control
subjects using the Fisher Exact Test.

This function produces as its output an object of class "CnvGSAOutput" – likewise a simple
S4 class that has slots for each of the output elements.

> data("cnvGSA_output_example")

> ls()

[1] "input" "output"

> class(output)

[1] "CnvGSAOutput"

attr(,"package")

[1] "cnvGSA"

> slotNames(output)

[1] "cnvData" "burdenSample" "burdenGs" "geneData" "enrRes"

The output slots contain the following:

� cnvData - Original and filtered CNV data

� burdenSample - Burden analysis results for subjects

� burdenGs - Burden analysis results for gene-sets

� geneData - Gene-centric statistics

� enrRes - Gene-set enrichment results
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As with the slots in the input object, each of these can likewise be accessed using an accessor
function of the same name (burdenSample() gets burdenSample, etc.).

Throughout the following sections, the pre-built input example object from above will be
shown to illustrate its typical elements; each of its elements will then be recreated with the
suffix “_demo” to demonstrate the syntax of the functions used to load them. Section 5 then
shows how to rebuild the full input object using the CnvGSAInput constructor and then run
the association test, and section 6 shows the full workflow example (i.e. all the code in a
single listing) along with a detailed discussion of how to review and interpret the results.

3 Loading input data

The elements of a CnvGSAInput object – i.e. cnvData, gsData, geneData, and params –
should be loaded first, and then the object itself can be created using a call to its constructor.
In other words, the procedure is along the lines of the following pseudocode:

cnvData <- ... # Load cnvData

gsData <- ... # Load gsData

geneData <- ... # Load geneData

params <- ... # Load params

# Create input object

input <- CnvGSAInput( cnvData, gsData, geneData, params )

Note that each of these elements can be loaded with the aid of functions provided in the
package (see below) *or* by manually building them up using list(), data.frame(), etc.

3.1 CNV data

The first input data structure that needs to be loaded is cnvData. As mentioned earlier, the
cnvData() function below is just an accessor for this slot:

> str( cnvData(input), strict.width="cut" )

List of 4

$ cnv :'data.frame': 5478 obs. of 7 variables:

..$ SampleID: chr [1:5478] "1020_4" "1020_4" "1020_4" "1030_3" ...

..$ Chr : chr [1:5478] "3" "4" "6" "7" ...

..$ Coord_i : int [1:5478] 4110452 34802932 35606076 64316996 56265896 39957..

..$ Coord_f : int [1:5478] 4145874 35676439 35673400 64593616 56361311 40082..

..$ Type : chr [1:5478] "DEL" "DUP" "DUP" "DEL" ...

..$ Genes : chr [1:5478] "" "" "2289" "168374" ...

..$ CnvID : chr [1:5478] "CNV_1" "CNV_2" "CNV_3" "CNV_4" ...
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$ s2class:'data.frame': 2035 obs. of 2 variables:

..$ Class : chr [1:2035] "case" "case" "case" "case" ...

..$ SampleID: chr [1:2035] "1020_4" "1030_3" "1045_3" "1050_3" ...

$ gsep : chr ";"

$ filters:List of 1

..$ limits_type: chr "DEL"

Its elements are as follows:

� $cnv - A data frame containing the CNVs. Each row contains data for one CNV:

◦ SampleID - ID assigned to the subject’s DNA sample in which the CNV was
found. The values here should match the corresponding values in the $s2class

data frame (see below). It is assumed that the correspondence for each is always
1-to-1 with a subject.

◦ Chr - Chromosome on which the CNV is located.
◦ Coord_i - Start position of the CNV on the chromosome.
◦ Coord_f - End position of the CNV on the chromosome.
◦ Type - CNV type (typically "DEL" or "DUP", but can be any other label indicating

deletions and gains).
◦ Genes - Genes affected by the CNV, stored in a delimited format inside a character

string; e.g. "54777;255352;84435" for semicolon-delimited EntrezGene identi-
fiers. (We recommend using this ID system – and in any case the example data
in this vignette follows it.) CNVs that are not genic should have an empty string
(i.e. "") in this column.

◦ CnvID - ID assigned to the CNV. (Note that this is also of type character.)

� $s2class - A data frame with columns $SampleID and $Class that is used as a lookup
table for the sample-to-class mapping. In the current implementation, only two classes
are allowed (typically each sample will be of class "case" or "ctrl").

� $gsep - The character used as delimiter in $cnv$Genes.

� $filters - List whose elements are parameters to filter variants. Note that the
location of it here is due to the legacy implementation of the package code
(i.e. it will be removed in a future version); to configure the filter parameters, set input
object’s params slot (see section 4).

3.1.1 Loading cnvData manually or from files

cnvData can be loaded by building up its component data structures manually along the
lines of the following pseudocode:

# Assign vectors SampleID, Chr, Coord_i, Coord_f, Type, Genes, and CnvID

SampleID <- ...
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Chr <- ...

Coord_i <- ...

Coord_f <- ...

Type <- ...

Genes <- ... # If using getCnvGenes() (see further down this section),

# just assign a vector of empty strings

CnvID <- ... # An arbitrary ID can be used as long as it is unique and

# of type character

# Create the cnv data frame

cnv <- data.frame( SampleID, Chr, Coord_i, Coord_f, Type, Genes, CnvID )

# Assign s2class and gsep

s2class <- ...

gsep <- ...

# Create cnvData

cnvData <- list( cnv, s2class, gsep )

The package also provides functions for conveniently loading cnvData from common filetypes.

� readGVF( filename ) - Imports CNV data from a .gvf (Genome Variation Format)
file such as those that can be downloaded from the Database of Genomic Variants
(http://projects.tcag.ca/variation/). For more information on the .gvf file format, see
the GVF specification:

Genome Variation Format 1.06
http://www.sequenceontology.org/resources/gvf.html

readGVF() can be used to load the cnv element of the cnvData slot.

> cnvData_demo <- list()

> cnvFile <- system.file( "extdata", "cnv.gvf", package="cnvGSAdata" )

> cnvData_demo$cnv <- readGVF( cnvFile )

> rm(cnvFile)

> head(cnvData_demo$cnv)

SampleID Chr Coord_i Coord_f Type Genes CnvID

1 1020_4 3 4110452 4145874 DEL CNV_1

2 1020_4 4 34802932 35676439 DUP CNV_2

3 1020_4 6 35606076 35673400 DUP CNV_3

4 1030_3 7 64316996 64593616 DEL CNV_4

5 1030_3 10 56265896 56361311 DEL CNV_5

6 1045_3 1 39957035 40082808 DUP CNV_6
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Notice that the Genes column is empty. To load this column, use getCnvGenes():

� getCnvGenes( cnv, genemap, delim ) - Takes as input a data frame of CNVs
(cnvData$cnv can be used directly here), a data frame of gene coordinates and returns
the genes hit by each CNV. The output is a vector – which can be directly assigned
to $cnv$Genes – in which each element contains a delimited string of the genes falling
within the range of the corresponding CNV in the input.

The cnvGSAdata package contains a pair of GFF files that can be used to load the genemap

data frame; one contains transcript coordinates and the other contains exon coordinates.
The former can be used to map CNVs by the “overlap-transcript” rule and the latter by
the “overlap-exon” rule (the latter is more stringent). Shown below is the code for build-
ing this data frame from the file containing exon coordinates (note that the runtime of
getCnvGenes() may be on the order of 10-20 minutes for a full lookup of CNV genes using
these examples):

> genemapFile <- system.file(

+ "extdata",

+ "merge_00k_flank_hg18_refGene_jun_2011_exon.gff",

+ package = "cnvGSAdata"

+ )

> fields <- read.table (

+ genemapFile,

+ sep = "\t",

+ comment.char = "",

+ quote = "\"",

+ header = FALSE,

+ stringsAsFactors = FALSE

+ )

> genemap <- data.frame(

+ Chr = fields[,1],

+ Coord_i = fields[,4],

+ Coord_f = fields[,5],

+ GeneID = fields[,11],

+ stringsAsFactors = FALSE

+ )

> genemap$Chr <- sub( genemap$Chr, pattern = "chr", replacement = "" )

> cnvData_demo$gsep <- ";"

> cnvData_demo$cnv$Genes <- getCnvGenes( cnv=cnvData$cnv, genemap=genemap,

+ delim=cnvData_demo$gsep )

> rm( genemapFile, fields, genemap )

The $s2class element can be loaded from a file in a straightforward way using R’s standard
read.table() function:
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> s2classFile <- system.file( "extdata", "s2class.txt", package="cnvGSAdata" )

> cnvData_demo$s2class <- read.table(

+ s2classFile,

+ sep = "\t",

+ col.names = c("SampleID", "Class"),

+ stringsAsFactors = FALSE

+ )

> rm(s2classFile)

3.2 Gene sets

The next data structure that needs to be loaded is gsData, which contains the gene-set data.
Again, the gsData() function below is just an accessor function for this slot:

> str( gsData(input), list.len=4 )

List of 2

$ gs2gene:List of 3722

..$ GO:0030850: chr [1:42] "2736" "5176" "9241" "8626" ...

..$ GO:0030856: chr [1:34] "595" "54206" "8626" "4435" ...

..$ GO:0030855: chr [1:206] "56033" "2302" "3713" "353142" ...

..$ GO:0031100: chr [1:40] "890" "4899" "578" "595" ...

.. [list output truncated]

$ gs2name: Named chr [1:3722] "prostate gland development" "regulation of epithelial cell differentiation" "epithelial cell differentiation" "organ regeneration" ...

..- attr(*, "names")= chr [1:3722] "GO:0030850" "GO:0030856" "GO:0030855" "GO:0031100" ...

The list elements are:

� $gs2gene - A list of character vectors where each vector contains the genes for a
particular gene-set; the gene-set names ("GO:0030850" etc.) are stored as the names

of the list elements. Since gene-sets can hold different numbers of genes, the vectors
will typically have different lengths.

� $gs2name - A single character vector mapping each gene-set name to its description.
The descriptions are stored as the vector elements and the gene-set names are stored
as the names of the vector elements.

3.2.1 Loading gene-sets from a .gmt file

The package provides a function for loading gene-sets directly from files:

� readGMT( filename ) - Imports gene-set data from a .gmt (Gene Matrix Transposed)
file such as those that can be downloaded from the GSEA/MSigDB database. For
more information on MSigDB and the .gmt file format, see:
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MSigDB: Molecular Signatures Database
http://www.broadinstitute.org/gsea/msigdb/index.jsp

GSEA wiki: Data formats
http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data formats

> gsDataFile <- system.file( "extdata", "gsData.gmt", package="cnvGSAdata" )

> gsData_demo <- readGMT( gsDataFile )

> rm(gsDataFile)

3.2.2 Sources of gene-sets

The first few entries in the gsData example above (page 8) show gene-set data collected from
the Gene Ontology database (http://www.geneontology.org/). Gene-sets can also be derived
from other public databases such as:

� PFAM: http://pfam.sanger.ac.uk/

� NCI: http://cactus.nci.nih.gov/ncidb2.1/

� KEGG: http://www.genome.jp/kegg/

� Biocarta: http://www.biocarta.com/genes/index.asp

� Reactome: http://www.reactome.org/

3.3 Gene annotations

The geneData slot in the input should contain the gene annotations:

> str( geneData(input), strict.width="cut" )

List of 1

$ ann:List of 2

..$ gene2sy : Named chr [1:44811] "A1BG" "NAT2" "ADA" "CDH2" ...

.. ..- attr(*, "names")= chr [1:44811] "1" "10" "100" "1000" ...

..$ gene2name: Named chr [1:44811] "alpha-1-B glycoprotein" "N-acetyltransf"..

.. ..- attr(*, "names")= chr [1:44811] "1" "10" "100" "1000" ...

Note that the annotations are stored in the intermediate list $ann. It contains two character
vectors: the first has the gene symbols; the second has the full descriptive names of the
genes.
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3.3.1 Loading annotations from the ‘org.Hs.eg.db’ Bioconductor package

These two vectors can be loaded quickly and easily using the org.Hs.eg.db Bioconductor
package, e.g. as in following code:

> library( "org.Hs.eg.db" )

> ann <- list( gene2sy = character(0), gene2name = character(0) )

> x <- org.Hs.egSYMBOL

> mapped_genes <- mappedkeys(x)

> ann$gene2sy <- unlist( as.list( x[mapped_genes] ) )

> x <- org.Hs.egGENENAME

> mapped_genes <- mappedkeys(x)

> ann$gene2name <- unlist( as.list( x[mapped_genes] ) )

> geneData_demo <- list(ann)

> rm( ann, x, mapped_genes )

4 Configuring test parameters

The main association test procedure accepts several parameters as a simple list (note that
the params() function below is just an accessor function for this slot):

> str( params(input) )

List of 6

$ grandtotals_mode: chr "all"

$ sample_classes : chr [1:2] "case" "ctrl"

$ fdr_iter : num 2

$ extended_report : num 200

$ filters :List of 1

..$ limits_type: chr "DEL"

$ boxplot_PDFs : logi FALSE

The parameters are as follows:

� grandtotals_mode - Used to modify the grand totals in the FET. In the presence of
significantly higher burden in genic CNVs (see sample burden analysis (section 6.2.3) –
GenCNV_N and Gene_N_Tot columns), setting this parameter to “cnvGen” will minimize
the effect of higher burden on the gene-set analysis results. Note that excessive burden
on case may produce unspecific gene-set results. Possible values are:

◦ "all" - Produce totals using all samples in the study
◦ "cnv" - Produce totals using filtered samples hit by at least one variant
◦ "cnvGen" - Produce totals using filtered samples hit by at least one genic variant
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� sample_classes - The sample classes, e.g. "case" and "ctrl".

� fdr_iter - The number of iterations to perform in the empirical FDR estimation
(which is done by randomizing sample class (i.e. case, control) assignments).

� extended_report - The number of gene-sets for which the extended report will be
generated. (The extended report is the ‘enrRes$extended’ structure in the output;
see section 6.2.1.)

� filters - A list of parameters for filtering the CNVs. Possible elements are:

◦ limits_type (optional) - Type of variant to be kept (e.g. "DEL" or "DUP").
◦ limits_size (optional; overrides $limits_type) - A data frame with the columns:

· Type - Type of variant to be kept
· Max_length - Maximum length of each CNV
· Max_gcount - Maximum number of genes hit by each CNV

◦ rem_genes (optional) - Vector of gene IDs to be removed from the analysis (the
variants hitting such genes will be removed as well).

� boxplot_PDFs - Boolean indicating whether or not to produce PDFs containing box-
plots of the statistics for the burden analysis on samples (cf. section 6.2.3).

� bhfdr_bins - Vector of integers specifying the bounds for the gene-set size bins to
be used in the binned Benjamini-Hochberg FDR calculation (see discussion in section
6.2.1). These should be in ascending order starting with the lower bound of the smallest
gene-set size bin and ending with the upper bound of the largest, where the upper
bound is exclusive and the upper bound is includisve. For example, “0 100 400 750”
above specifies gene-set size bins of 1-100 genes, 101-400 genes, and 401-750 genes.

� do_logistic - String indicating how to perform the logistic regression model. "full"
will enable the model for all gene-sets and show the resulting columns in both enrRes$basic

and enrRes$extended in the output whereas "extended" will enable it only for those
gene-sets shown in enrRes$extended (see section 6.2.1 for details on both these output
structures); if absent or with any other value, the model will be disabled.

Note: larger gene-sets have more statistical power; this can be taken into account by sepa-
rately testing gene-sets with different sizes.

4.1 Loading test parameters from a file

To make it easier to integrate the association test into a larger bioinformatics pipeline, it is
convenient to read in the parameters from an external source such as a text file. One such
implementation is to record each parameter on its own line using R syntax:
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# Main test parameters

grandtotals_mode <- "all"

sample_classes <- c("case", "ctrl")

fdr_iter <- 1000

extended_report <- 200

boxplot_PDFs <- FALSE

bhfdr_bins <- c(0, 100, 400, 750)

# cnvData$filters parameters

limits_type <- "DEL"

The package provides a simple function to parse such a file (essentially just source()ing it
and then handling the few possibilites around the $filters parameters):

� readParamsRFile( filename ) - Read test parameters from filename and return
a list object that can be passed to the params argument in cnvGSAFisher(). The
file is assumed to have all the main test parameters as above. For the $filters

parameters (cf. section 3), $limits_type and $rem_genes can be assigned directly
(as $limits_type is in the example above); $limits_size should be specified by
assigning its elements $Type, $Max_length, and $Max_gcount.

> paramFile <- system.file( "scripts", "params_example.R", package="cnvGSA" )

> params_demo <- readParamsRFile( paramFile )

> rm(paramFile)

At this point the $filters element of cnvData can be assigned:

> cnvData_demo$filters <- params_demo$filters

5 Running the association test

Now that each of its individual elements have been loaded, the input object can be built
using the CnvGSAInput() constructor:

> input_demo <- CnvGSAInput(

+ cnvData = cnvData_demo,

+ gsData = gsData_demo,

+ geneData = geneData_demo,

+ params = params_demo

+ )

> rm( cnvData_demo, gsData_demo, geneData_demo, params_demo )

The association test can now be run by calling the main function.
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> output <- cnvGSAFisher( input )

Note that a high fdr_iter will require a noticeable runtime. For example, on a
typical desktop workstation setup as of early 2012, the runtime for an input data-set similar
to the full workflow example (5500 CNVs (averaging 1 gene per filtered CNV) against 3700
gene-sets; see section 6), with an fdr_iter of 1000, will be on the order of 1 hour.

(Also note that if you are running the test more than once with the same input and pa-
rameters, be sure to first call set.seed() so that the random number generator is consistent
each time; otherwise the FDR calcluation will be slightly different for each run.)

6 Full workflow example: case-control analysis of rare

CNVs from the Pinto et al. 2010 ASD study

6.1 Loading the data and running the association test

The following code performs an analysis of approx. 5500 CNVs from 2000 subjects against
approx. 3700 gene-sets using an fdr_iter of 1000. The CNV data-set consists of rare CNVs
as described in Pinto et al., Nature 2010 [1], and the gene-sets are a collection imported from
the Gene Ontology, KEGG, Biocarta, Reactome, and PFAM (see section 3.2).

library( "cnvGSA" )

library( "cnvGSAdata" )

library( "org.Hs.eg.db" ) ## for gene annotations

##

## Load data and parameters

##

## CNVs

cnvData <- list()

cnvFile <- system.file( "extdata", "cnv.gvf", package="cnvGSAdata" )

cnvData$cnv <- readGVF( cnvFile )

rm(cnvFile)

## CNV genes

## (N.B. may take several minutes to run the full example CNV data against

## the full example gene map)

genemapFile <- system.file(

"extdata",

"merge_00k_flank_hg18_refGene_jun_2011_exon.gff",
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package = "cnvGSAdata"

)

fields <- read.table (

genemapFile,

sep = "\t",

comment.char = "",

quote = "\"",

header = FALSE,

stringsAsFactors = FALSE

)

genemap <- data.frame(

Chr = fields[,1],

Coord_i = fields[,4],

Coord_f = fields[,5],

GeneID = fields[,11],

stringsAsFactors = FALSE

)

genemap$Chr <- sub( genemap$Chr, pattern = "chr", replacement = "" )

cnvData$gsep <- ";"

cnvData$cnv$Genes <- getCnvGenes(

cnv = cnvData$cnv,

genemap = genemap,

delim = cnvData$gsep

)

rm( genemapFile, fields, genemap )

## Sample classes

s2classFile <- system.file( "extdata", "s2class.txt", package="cnvGSAdata" )

cnvData$s2class <- read.table(

s2classFile,

sep = "\t",

col.names = c("SampleID", "Class"),

stringsAsFactors = FALSE

)

rm(s2classFile)

## Gene sets

gsDataFile <- system.file( "extdata", "gsData.gmt", package="cnvGSAdata" )

gsData <- readGMT( gsDataFile )

rm(gsDataFile)

## Gene annotations

ann <- list( gene2sy = character(0), gene2name = character(0) )
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x <- org.Hs.egSYMBOL

mapped_genes <- mappedkeys(x)

ann$gene2sy <- unlist( as.list( x[mapped_genes] ) )

x <- org.Hs.egGENENAME

mapped_genes <- mappedkeys(x)

ann$gene2name <- unlist( as.list( x[mapped_genes] ) )

geneData <- list(ann)

rm( ann, x, mapped_genes )

## Parameters

paramFile <- system.file( "scripts", "params_example.R", package="cnvGSA" )

params <- readParamsRFile( paramFile )

cnvData$filters <- params$filters

rm( paramFile )

##

## Create the input object

##

input <- CnvGSAInput(

cnvData = cnvData,

gsData = gsData,

geneData = geneData,

params = params

)

rm( cnvData, gsData, geneData, params )

##

## Run association test and save the output

##

output <- cnvGSAFisher( input )

save( output, file = "cnvGSA_output_example.RData" )

6.2 Reviewing the results

(Note: Since the runtime for the full workflow example above, with fdr_iter of 1000, may
take on the order of one hour or more on a modern workstation (cf. section 5), we have
included the saved output in the companion data package as shown in the workflow outline
section.)
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As stated in the workflow outline, the output object is a simple S4 class containing a slot
for each output data structure:

> slotNames(output)

[1] "cnvData" "burdenSample" "burdenGs" "geneData" "enrRes"

Similar to the input, each of these is a list structure containing further data structures:
cnvData contains the original and filtered CNV data, enrRes contains the gene-set enrich-
ment results, and burdenSample, burdenGs, and geneData contain burden analysis and
gene-centric statistics that can be used to ensure the validity of the enrichment results. Just
as with the input object, each of these can be accessed using an accessor function of the
same name.

6.2.1 Enrichment results and gene-centric statistics

Taking a look first at enrRes:

> str( enrRes(output), max.level=1 )

List of 4

$ basic :'data.frame': 3368 obs. of 16 variables:

$ totals : Named int [1:2] 889 1146

..- attr(*, "names")= chr [1:2] "case" "ctrl"

$ extended:'data.frame': 200 obs. of 31 variables:

$ gstables:List of 200

.. [list output truncated]

The data frames basic and extended contain the actual enrichment results. basic has
the results for all tested gene-sets, whereas extended has several additional columns of in-
formation but only for the most significant gene-sets (the number of which can be set by
the extended_report parameter; see section 4). totals simply shows the total number of
case and control samples (in accordance with the “totals” option set in the parameters).
gstables contains a list of tables with CNV and gene information specific to each gene-set
(this is discussed in more detail in the following section).

The structure of extended is shown in the listing below (basic has the same structure
but only goes up to FET_permFDR):

> str( enrRes(output)$extended, max.level=1, strict.width="cut" )
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'data.frame': 200 obs. of 31 variables:

$ GsID : chr "GO:0005929" "GO:0030030" "GO:0006928" "GO:0005814" ...

$ GsName : chr "cilium" "cell projection organization" "cellular component movement"..

$ GsSize : int 170 685 685 39 590 590 343 70 485 554 ...

$ case_N : num 37 62 32 16 30 30 25 28 22 28 ...

$ ctrl_N : num 11 33 10 1 9 9 6 8 5 9 ...

$ case_% : num 4.16 6.97 3.6 1.8 3.37 ...

$ ctrl_% : num 0.9599 2.8796 0.8726 0.0873 0.7853 ...

$ FET_pv : num 1.99e-06 1.19e-05 1.57e-05 1.64e-05 2.12e-05 ...

$ FET_OR : num 4.48 2.53 4.24 20.96 4.41 ...

$ FET_ORconfLow : num 2.45 1.73 2.24 3.92 2.26 ...

$ FET_ORconfHigh : num Inf Inf Inf Inf Inf ...

$ FET2s_OR : num 4.48 2.53 4.24 20.96 4.41 ...

$ FET2s_ORconfLow : num 2.22 1.61 2.02 3.24 2.03 ...

$ FET2s_ORconfHigh : num 9.79 4.02 9.72 877.2 10.62 ...

$ FET_bhFDR : num 0.00669 0.01188 0.01188 0.01188 0.01188 ...

$ FET_permFDR : num 0 0.0015 0.001 0.001 0.000833 ...

$ Support_size_case : int 13 30 27 1 25 25 18 6 17 23 ...

$ Support_ratio_case : num 2.23 1.277 1.149 0.748 1.236 ...

$ Support_geneid_case: chr "4867;9576;64518;2782;83659;65217;221322;164714;57096;4653;10461;351"..

$ Support_symbol_case: chr "NPHP1;SPAG6;TEKT3;GNB1;TEKT1;PCDH15;C6orf170;TTLL8;RPGRIP1;MYOC;MER"..

$ Support_size_ctrl : int 4 12 3 1 2 2 3 3 3 2 ...

$ Support_ratio_ctrl : num 0.843 0.628 0.157 0.919 0.121 ...

$ Support_geneid_ctrl: chr "51626;51057;27241;84075" "152273;1287;775;57689;51626;56288;7204;21"..

$ Support_symbol_ctrl: chr "DYNC2LI1;C2orf86;BBS9;FSCB" "FGD5;COL4A5;CACNA1C;LRRC4C;DYNC2LI1;PA"..

$ case_SampleID : Factor w/ 157 levels "1030_3;1128_3;1199_3;1265_8;13037_463;13054_643;130"..

$ ctrl_SampleID : Factor w/ 112 levels "B106672_1007874643;B187727_0067949240;B191910_10078"..

$ case_CnvID : Factor w/ 159 levels "CNV_101;CNV_151;CNV_335;CNV_1211;CNV_2026",..: 3 83 ..

$ ctrl_CnvID : Factor w/ 114 levels "CNV_2399;CNV_2620;CNV_2639;CNV_2837;CNV_2860;CNV_29"..

$ FETpv_remTop : num 9.74e-03 5.68e-03 4.97e-05 1.00 6.82e-05 ...

$ FETfdr_remTop :List of 200

.. [list output truncated]

$ Topgene : chr "CROCC" "CROCC" "ERBB4" "CROCC" ...

Each row contains results for a single gene-set. The columns are as follows:

� GsID, GsName, and GsSize show the gene-set’s identifier, name, and number of member
genes respectively.

� case_N/ctrl_N and case_%/ctrl_% show the number and percentage of case and
control samples hitting the gene-set.

� FET_pv, FET_OR, FET_ORconfLow, and FET_ORconfHigh show the gene-set p-value, odds
ratio, and low and high bounds of the confidence interval for the one-sided Fisher
Exact Test of the gene-set.
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� FET2s_pv, FET2s_OR, FET2s_ORconfLow, and FET2s_ORconfHigh show the gene-set p-
value, odds ratio, and low and high bounds of the confidence interval for the two-sided
Fisher Exact Test of the gene-set.

� FET_BHFDR, FET_binnedBHFDR, and FET_permFDR show FDR values using three meth-
ods. FET_BHFDR is the Benjamini-Hochberg FDR for each gene-set calculated in rela-
tion to all the gene-sets in the input. FET_binnedBHFDR does likewise for each gene-set
but in relation only to those gene-sets in the same size bin; gene-set size bins are
set with the “bhfdr_bins” parameter in the input (see section 4). FET_permFDR is a
permutation-based FDR.

� Support_size_case, Support_geneid_case, and Support_symbol_case show the num-
ber, IDs, and symbols of the “case support genes” involving only the genes from this
gene-set. “Case support genes” are defined as those genes whose counts are greater in
cases than in controls for the given gene-set. The set of case support genes over all
genes is provided in geneData in the output; see the description a little further down
in this section.)

� Support_size_ctrl, Support_geneid_ctrl, and Support_symbol_ctrl show the cor-
responding “control support genes” (i.e. same as above but with genes whose counts
are greater in controls than in cases).

� FETpv_remTop and FETfdr_remTop show the exact and permuted p-values when the
top associated gene in the gene-set is removed.

� Topgene shows the top associated gene in the gene-set.

As mentioned above, the basic data frame contains only those columns going up to FET_permFDR
– but for all gene-sets in the study. This is sufficient to identify those gene-sets passing the
FDR threshold:

> 1 : max( which( enrRes(output)$basic$FET_permFDR <= 0.01 ) )

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(Note that max is used since the permutation FDR is not necessarily monotonic when the
gene-sets are ranked in order of FET_pv.) Taking a closer look now at extended to see their
p-values:

> head( enrRes(output)$extended[ , c("FET_pv","FET_OR","FET_bhFDR","FET_permFDR",

+ "Topgene", "FETpv_remTop")], 20 )

FET_pv FET_OR FET_bhFDR FET_permFDR Topgene FETpv_remTop

GO:0005929 1.985592e-06 4.477803 0.006687474 0.0000000000 CROCC 9.741667e-03

GO:0030030 1.189627e-05 2.527383 0.011878618 0.0015000000 CROCC 5.678902e-03

GO:0006928 1.569093e-05 4.238933 0.011878618 0.0010000000 ERBB4 4.968197e-05

GO:0005814 1.643013e-05 20.963648 0.011878618 0.0010000000 CROCC 1.000000e+00

GO:0048870 2.116143e-05 4.409092 0.011878618 0.0008333333 ERBB4 6.817738e-05

GO:0051674 2.116143e-05 4.409092 0.011878618 0.0008333333 ERBB4 6.817738e-05
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GO:0007265 2.542393e-05 5.494198 0.011882990 0.0007142857 ARHGEF5 1.419163e-04

GO:0044441 2.822563e-05 4.622781 0.011882990 0.0007500000 CROCC 1.057877e-01

GO:0008284 6.025653e-05 5.787094 0.020874673 0.0015555556 ERBB4 4.035511e-04

GO:0016477 6.817738e-05 4.105704 0.020874673 0.0013636364 ERBB4 2.124235e-04

GO:0051056 6.817738e-05 4.105704 0.020874673 0.0013636364 ARHGAP11B 6.376209e-04

GO:0007264 9.328775e-05 3.357964 0.026182762 0.0032500000 ARHGAP11B 7.128646e-04

GO:0045121 1.419163e-04 6.229265 0.035190752 0.0045384615 ERBB4 9.849042e-04

GO:0005096 1.671770e-04 7.420950 0.035190752 0.0051250000 ARHGAP11B 2.416340e-03

GO:0031023 1.671770e-04 7.420950 0.035190752 0.0051250000 CROCC 8.996573e-01

GO:0051297 1.671770e-04 7.420950 0.035190752 0.0051250000 CROCC 8.996573e-01

GO:0030695 3.032652e-04 3.017567 0.054020858 0.0098333333 ARHGAP11B 2.046542e-03

GO:0060589 3.032652e-04 3.017567 0.054020858 0.0098333333 ARHGAP11B 2.046542e-03

GO:0046578 3.047495e-04 4.593581 0.054020858 0.0100526316 ARHGEF5 1.839682e-03

GO:0010035 3.307224e-04 6.976431 0.055693653 0.0102500000 ERBB4 2.416340e-03

The gene-set association p-values above look promising. Note however that just four genes are
shown as the top associated genes for these gene-sets; could it be that several of the gene-sets are
acquiring most of their association from these (e.g. if they happen to be single highly associated
genes)? geneData provides statistics that may be helpful here:

> str( geneData(output), strict.width="wrap" )

List of 6

$ ann :List of 2

..$ gene2sy : Named chr [1:44811] "A1BG" "NAT2" "ADA" "CDH2" ...

.. ..- attr(*, "names")= chr [1:44811] "1" "10" "100" "1000" ...

..$ gene2name: Named chr [1:44811] "alpha-1-B glycoprotein"

"N-acetyltransferase 2 (arylamine N-acetyltransferase)" "adenosine

deaminase" "cadherin 2, type 1, N-cadherin (neuronal)" ...

.. ..- attr(*, "names")= chr [1:44811] "1" "10" "100" "1000" ...

$ gcounts :'data.frame': 1362 obs. of 8 variables:

..$ GeneID: Factor w/ 1362 levels "100036519","100128285",..: 1346 547 1155 96

1251 212 638 737 1280 68 ...

..$ Symbol: chr [1:1362] "CROCC" "HLA-B" "ZDHHC11" "CASC4" ...

..$ Name : chr [1:1362] "ciliary rootlet coiled-coil, rootletin" "major

histocompatibility complex, class I, B" "zinc finger, DHHC-type containing

11" "cancer susceptibility candidate 4" ...

..$ case_N: int [1:1362] 16 13 8 5 13 4 4 4 4 5 ...

..$ ctrl_N: int [1:1362] 0 4 1 0 6 0 0 0 0 1 ...

..$ case_%: num [1:1362] 1.8 1.462 0.9 0.562 1.462 ...

..$ ctrl_%: num [1:1362] 0 0.349 0.087 0 0.524 0 0 0 0 0.087 ...

..$ Pvalue: num [1:1362] 1.92e-06 6.59e-03 7.44e-03 1.61e-02 2.70e-02 ...

$ support_case: chr [1:726] "9696" "3106" "79844" "113201" ...

$ support_ctrl: chr [1:636] "146857" "55106" "91607" "386757" ...

$ totals :List of 3

..$ all : Named int [1:2] 889 1146
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.. ..- attr(*, "names")= chr [1:2] "case" "ctrl"

..$ cnv : Named int [1:2] 692 880

.. ..- attr(*, "names")= chr [1:2] "case" "ctrl"

..$ cnvGen: Named int [1:2] 454 547

.. ..- attr(*, "names")= chr [1:2] "case" "ctrl"

$ coverage : Named chr [1:10] "17060" "4076" "1362" "3164" ...

..- attr(*, "names")= chr [1:10] "Genes in gene-set universe" "Genes hit by CNV

(before filters)" "Genes hit by CNV (after filters)" "Genes hit by CNV

(before filters) in gene-sets" ...

Its elements are:

� ann - Gene annotations (symbols and descriptive names), exactly as in the input (see
section 3.3).

� gcounts - Data frame containing case/control counts and percentages and the p-value
of association for each gene.

� support_case - The complete set of “case support genes” (as defined in the description
of extended earlier in this section) over all gene-sets.

� support_ctrl - As above but with “control support genes”.

� totals - Counts of case and control samples (all, those with CNVs, and those with
genic CNVs).

� coverage - Vector of various gene-related statistics; descriptions for each element are
in its names attribute.

In particular, gcounts can be reviewed to see the associations for those top associated genes:

> head( geneData(output)$gcounts[ , -3] )

GeneID Symbol case_N ctrl_N case_% ctrl_% Pvalue

9696 9696 CROCC 16 0 1.800 0.000 1.916386e-06

3106 3106 HLA-B 13 4 1.462 0.349 6.591475e-03

79844 79844 ZDHHC11 8 1 0.900 0.087 7.443201e-03

113201 113201 CASC4 5 0 0.562 0.000 1.606206e-02

84871 84871 AGBL4 13 6 1.462 0.524 2.696118e-02

147804 147804 LOC147804 4 0 0.450 0.000 3.665167e-02

CROCC has a nominally significant association p-value, as displayed by the gcounts ta-
ble. CROCC is also the main gene driving the significant association of several gene-sets
(FETpv_remTop has significant drops when CROCC is the top gene). In cases such as these,
it is usually good to consider the following:

i) Make sure the nominally associated gene (CROCC) is really such and that the signal is
not an artifact (e.g. the gene may map to an array region that’s prone to false positives); and

20



ii) This test is designed for rare CNV data-sets which hardly have significantly associated
genes. Significantly associated genes, even if truthful, can produce gene-set association with
little contribution from other genes. Gene-sets with log10(FETpv_remTop / FET_pv) >= 3

should be interpreted very carefully.

In the specific case of the Pinto et al 2010 study, CROCC and HLA-B were deemed po-
tential false positives, so their variants were removed. (In general, specific genes can be
removed by including their gene IDs in the rem_genes parameter in the input; see section
4.)

6.2.2 Detailed analysis of gene-set associations

As a further aid in understanding the CNVs and genes contributing to the association results,
enrRes provides gstables – a list of data frames, one for each of the top gene-sets, containing
information about the CNVs and corresponding genes affecting the gene-set:

> str( enrRes(output)$gstables, max.level=1, list.len=5 )

List of 200

$ GO:0005929:'data.frame': 48 obs. of 13 variables:

.. [list output truncated]

$ GO:0030030:'data.frame': 95 obs. of 13 variables:

.. [list output truncated]

$ GO:0006928:'data.frame': 43 obs. of 13 variables:

.. [list output truncated]

$ GO:0005814:'data.frame': 17 obs. of 13 variables:

.. [list output truncated]

$ GO:0048870:'data.frame': 40 obs. of 13 variables:

.. [list output truncated]

[list output truncated]

The structure of the data frame for a particular gene-set is similar to that of cnvData$cnv

in the input:

> enrRes(output)$gstables[[2]][10:19,]

CnvID SampleID Chr Coord_i Coord_f Type Length Gcount GsGcount GsID Class Genes Symbols

10 CNV_1222 3266_003 2 110206673 110615080 DEL 408407 2 2 GO:0030030 case 4867 NPHP1

11 CNV_1234 3272_004 21 26100421 26168810 DEL 68389 1 1 GO:0030030 case 351 APP

12 CNV_1378 5007_3 1 144099494 144627859 DEL 528365 17 15 GO:0030030 case 148738 HFE2

13 CNV_1407 5036_4 X 29446046 29557942 DEL 111896 1 1 GO:0030030 case 11141 IL1RAPL1

14 CNV_1435 5065_3 1 17079505 17140083 DEL 60578 1 1 GO:0030030 case 9696 CROCC

15 CNV_1445 5068_3 16 29502984 30127026 DEL 624042 30 21 GO:0030030 case 11151;5595 CORO1A;MAPK3

16 CNV_1449 5072_3 2 50912249 50955087 DEL 42838 1 1 GO:0030030 case 9378 NRXN1

17 CNV_145 13037_463 2 51002576 51157742 DEL 155166 1 1 GO:0030030 case 9378 NRXN1

18 CNV_1455 5081_4 3 1090904 1217096 DEL 126192 1 1 GO:0030030 case 27255 CNTN6

19 CNV_1458 5082_4 17 1754455 1844570 DEL 90115 2 2 GO:0030030 case 146760 RTN4RL1
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(Note that the selection above shows only 10 rows from a single data frame in the list.) The
extra columns are Gcount, showing the total number of genes hit by the CNV (i.e. out of the
set of all genes – not just the ones that are members of the particular gene-set); GsGcount,
showing the number of genes hit by the CNV also found amongst all gene-sets in the input
(i.e. not just those of the particular gene-set); and Genes and Symbols, finally showing only
the gene IDs and symbols of those genes hit by the CNV that are members of the particular
gene-set.

Examining the data frame for a particular gene-set may reveal that its association due
to certain genes may actually be better explained by other genes (those that have a clearer
functional impact or that have previously been associated with the cases under considera-
tion).

6.2.3 Burden analysis

The enrichment results for a rare CNV/gene-set association test will draw the strongest
conclusions when the case and control data are closely matched – i.e. having similar overall
CNV and CNV-gene profiles – so that associations arising from the remaining differences can
indeed be taken as valid rather than artifacts of the input data. The “burden” statistics in
burdenGs and burdenSample, described below, are provided for this purpose. In particular,
they will display if cases and controls have different CNV length, CNV number, and CNV
gene number.

Taking a look thus at the burdenSample statistics:

> burdenSample(output)

$SamplesCNV

$SamplesCNV$summary

$SamplesCNV$summary$case

LogLenMean LogLenTot CNV_N GenCNV_N GsGenCNV_N Gene_N_Mean GsGene_N_Mean Gene_N_Tot GsGene_N_Tot

Min 4.481772 4.481772 1.000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000

Q1 4.716148 4.849929 1.000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000

Mean 4.952673 5.147046 1.776012 0.9089595 0.7947977 1.025864 0.7986237 1.884393 1.465318

Median 4.890383 5.126139 1.500000 1.0000000 1.0000000 0.500000 0.5000000 1.000000 1.000000

Q3 5.113215 5.410046 2.000000 1.0000000 1.0000000 1.000000 1.0000000 2.000000 2.000000

Max 6.268872 6.569902 7.000000 6.0000000 5.0000000 31.000000 21.0000000 31.000000 24.000000

$SamplesCNV$summary$ctrl

LogLenMean LogLenTot CNV_N GenCNV_N GsGenCNV_N Gene_N_Mean GsGene_N_Mean Gene_N_Tot GsGene_N_Tot

Min 4.477136 4.477136 1.000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000

Q1 4.742337 4.852478 1.000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000

Mean 4.978547 5.164490 1.735227 0.8147727 0.6886364 0.916875 0.6614962 1.582955 1.163636

Median 4.911761 5.144712 1.000000 1.0000000 1.0000000 0.500000 0.3333333 1.000000 1.000000

Q3 5.163548 5.415993 2.000000 1.0000000 1.0000000 1.000000 1.0000000 2.000000 2.000000

Max 6.466677 6.466677 6.000000 5.0000000 4.0000000 19.000000 9.5000000 30.000000 21.000000

$SamplesCNV$pvalue

LogLenMean LogLenTot CNV_N GenCNV_N GsGenCNV_N Gene_N_Mean GsGene_N_Mean Gene_N_Tot GsGene_N_Tot

case > ctrl 0.93867665 0.8005281 0.201231 0.01331392 0.003815777 0.1063544 0.01592546 0.02198636 0.004259239
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case < ctrl 0.06132335 0.1994719 0.798769 0.98668608 0.996184223 0.8936456 0.98407454 0.97801364 0.995740761

$SamplesCNV$no_cnv_proportion

$SamplesCNV$no_cnv_proportion$PropEstimates

case ctrl

0.7784027 0.7678883

$SamplesCNV$no_cnv_proportion$Pvalue

[1] 0.6115485

The first two tables, $SamplesCNV$summary$case and $SamplesCNV$summary$ctrl, show
summary statistics across individual case and control samples. LogLenMean and LogLenTot

are the (base 10) logarithm of the mean and total lengths of the CNVs in a sample;
CNV_N, GenCNV_N, and GsGenCNV_N are the number of all CNVs, genic CNVs, and gene-
set genic CNVs in the sample; and finally Gene_N_Mean, GsGene_N_Mean, Gene_N_Tot, and
GsGene_N_Tot are the mean and total counts of genes and genic genes per CNV in the
sample. Comparing these two tables shows that the case and control data sets are relatively
similar in the example above.

The next table, $SamplesCNV$pvalue, shows the results of a t-test done for each of the
statistics above comparing cases to controls. If any of these p-values is significant, gene-sets
could be systematically inflated. $SamplesCNV$no_cnv_proportion likewise shows the frac-
tion of samples in cases and controls that do contain the particular CNV type set in the test
parameters (i.e. usually one of "DUP" or "DEL" – see section 4) and the results of a t-test
comparison between them – with similar implications if the p-value there is significant.

Taking a look now at the burdenGs statistics:

> burdenGs(output)

$coverage

All case ctrl

Sample N in the study, no filters 2035.0000000 889.0000000 1146.0000000

Sample N with at least one cnv, no filters 2035.0000000 889.0000000 1146.0000000

Sample N with at least one cnv 1572.0000000 692.0000000 880.0000000

Sample % with at least one cnv (on tot) 0.7724816 0.7784027 0.7678883

Sample N with at least one genic cnv 1001.0000000 454.0000000 547.0000000

Sample % with at least one genic cnv (on tot) 0.4918919 0.5106862 0.4773124

Sample N with at least one perturbed gene-set 892.0000000 412.0000000 480.0000000

Sample % with at least one perturbed gene-set (on tot) 0.4383292 0.4634421 0.4188482

Gene-set N with at least one sample 3369.0000000 3059.0000000 2798.0000000

Gene-set % with at least one sample 0.9051585 0.8218700 0.7517464

$pairs

All case ctrl

N of sample-gs pair, >= 1 CNV-perturbed gene 3.777900e+04 2.031300e+04 1.746600e+04

% of sample-gs pair, >= 1 CNV-perturbed gene (on all pairs) 4.987807e-03 6.138976e-03 4.094798e-03

N of sample-gs pair, >= 2 CNV-perturbed gene 2.335000e+03 1.180000e+03 1.155000e+03

% of sample-gs pair, >= 2 CNV-perturbed gene (on positive pairs) 6.180682e-02 5.809088e-02 6.612848e-02

N of sample-gs pair, >= 3 CNV-perturbed gene 5.230000e+02 2.810000e+02 2.420000e+02

% of sample-gs pair, >= 3 CNV-perturbed gene (on positive pairs) 1.384367e-02 1.383351e-02 1.385549e-02

N of sample-gs pair, >= 2 CNV 3.050000e+02 1.550000e+02 1.500000e+02

% of sample-gs pair, >= 2 CNV (on positive pairs) 8.073268e-03 7.630581e-03 8.588114e-03

N of sample-gs pair, >= 2 CNV on distinct chr. 2.370000e+02 1.320000e+02 1.050000e+02

% of sample-gs pair, >= 2 CNV on distinct chr. (on positive pairs) 6.273326e-03 6.498302e-03 6.011680e-03
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The first table shows basic statistics for all, case, and control samples:

� Total number of samples;

� Number of samples with at least one pre-filtered CNV;

� Number and percentage of samples with at least one post-filtered CNV (“(on tot)”
simply indicates that the percentage is taken on the total number of the particular
type of sample);

� Number and percentage of samples with at least one genic CNV;

� Number and percentage of samples with at least one CNV hitting a gene-set under
consideration; and finally

� Number and percentage of gene-sets hit by at least one sample.

As with burdenSample, the values in this first table show that the case and control data sets
in this example are appropriately matched.

The second table above shows statistics for all, case, and control (sample, gene-set) pairs and
requires some explanation. A “(sample, gene-set) pair” in the context of these statistics is a
cell in the initial matrix of perturbation counts formed by tabulating all gene-sets against
all samples, where the perturbation count is the number of genes in the gene-set that are
hit by CNVs in the sample. Nonzero values in this initial matrix are then truncated to 1;
this matrix of binary perturbation counts is, as described in the Overview section, used to
compute the Fisher Exact Test contingency tables. The rows in the second table above are
thus taken from the initial matrix – as follows:

� Number and percentage of (sample, gene-set) pairs having at least one gene of interest
hit by CNVs in the sample. “(on all pairs)” indicates that the percentage is taken
out of all cells in the matrix.

� Number and percentage of (sample, gene-set) pairs having at least 2 / at least 3 genes
of interest hit by CNVs in the sample. “(on positive pairs)” indicates that the
percentage is taken out of all nonzero cells in the matrix.

� Number and percentage of (sample, gene-set) pairs having at least 2 CNVs.

� Number and percentage of (sample, gene-set) pairs having at least 2 CNVs on distinct
chromosomes.

The rationale for these statistics is twofold: on the one hand, it is another check to ensure
that the case and control data sets are well-matched; on the other hand, if it turns out that
a substantial number of CNVs are hitting more than one gene-set, it may be an indication
to apply a more sophisticated association test (such as the trend test). In the burdenGs

output above, the statistics again show that the cases and controls are well-matched, and
the percentage of CNVs hitting more than one gene-set is evidently low (around 6%).

It should be noted that the size of the gene-sets will affect these statistics (larger gene-sets
will increase the likelihood that the CNVs are hitting genes from more than one gene-set).
The stringency in the definition of “rare” CNV is another important factor.
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