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1 Introduction

High-throughput phenotyping generates large volumes of varied data includ-
ing both categorical and continuous data. Operational and cost constraints
can lead to a work-flow that precludes traditional analysis methods. Fur-
thermore, for a high throughput environment, a robust automated statistical
pipeline that alleviates manual intervention is required.

PhenStat is a package that provides statistical methods for the identification
of abnormal phenotypes with an emphasize on high-throughput dataflows.
The package contains dataset checks and cleaning in preparation for the
analysis. For continuous data, an iterative fitting process is used to fit a
regression model that is the most appropriate for the data (Mixed Model
framework), whilst for categorical data, a Fisher Exact Test is implemented
(Fisher Exact Test framework).

Both analysis frameworks output a statistical significance measure, an effect
size measure, model diagnostics (when appropriate), and graphical visuali-
sation of the genotype effect.

The Mixed Model (MM) framework is an iterative process to select the best
model for the data which considers both the best modelling approach (mixed
model or general linear regression) and which factors to include in the model.
There is also user control functionality on whether to include body weight in
the modelling process.

Depending on the user needs, the statistical analysis output can either be
interactive where the user can view the graphical output and analysis sum-
mary or for a database implementation the output consists of a vector of
output and saved graphical files.

This package has been tested and demonstrated with an application of 420
lines of historic mouse phenotyping data from the Sanger MGP and Europhe-
nome resources.

The package consists of three stages as shown in Figure ??:

1. Dataset processing: includes checking, cleaning and terminology unifi-
cation procedures and is completed by function PhenList which creates
a PhenList object.

2. Statistical analysis: is managed by function testDataset and consists
of Mixed Model or Fisher Exact framework implementations. The re-
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Figure 1: The PhenStat package’s three stage structure: dataset process-
ing, analysis, and result output. Dotted boxes show the place-holders for
new functions that could implement other methods for data analysis and/or
output of results.
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sults are stored in PhenTestResult object. Potentially this layer can be
extended adding new statistical methods (dotted box in Figure ??).

3. Results Output: depending on user needs there are two functions for
the test results output: summaryOutput and vectorOutput that present
data from PhenTestResult object in a particular format. The output
layer is also easily extendible (shown as dotted box in Figure ??).

Package run time depends on a variety of factors including dataset size,
computational resources, etc. Average analysis run time of the pilot dataset
in our local environement is 1.34 seconds.

2 Data Processing with PhenList Function

PhenList function performs data processing and creates a PhenList object.
As input, PhenList function requires dataset of phenotypic data that can be
presented as data frame. For instance, it can be dataset stored in csv or txt
file.

> dataset <- read.csv("myPhenotypicDataset.csv")

> dataset <- read.table("myPhenotypicDataset.txt",sep="\t")

Data is organised with a row for a sample and each column provides in-
formation such as meta data (strain, genotype, etc.) and the variable of
interest.

In Table ?? the example dataset is presented with numerical variables of
interest. Table ?? shows the example dataset with categorical data.

In addition to dependent variable column (the variable of interest) mandatory
columns are ”Genotype” and ”Sex”. The ”Assay.Date” column is used to
model ”Batch” effect if not specified differently. ”Weight” column is used to
model body weight effect.

The information provided in the ”Assay.Date” column is treated as a cate-
gorical variable with different strings as different levels. As such there is no
requirement to provide the date in any particular format.

The main tasks performed by the PhenStat package’s function PhenList
are:

• terminology unification (see section ?? for more details),

• filtering out undesirable records (when the argument dataset.clean is
set to TRUE),
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• and checking if the dataset can be used for the statistical analysis.

All tasks are accompanied by error messages, warnings and/or other informa-
tion: error messages explain why function stopped, warning messages require
user’s attention (for instance, user is notified that column was renamed in the
dataset), and information messages provide other details (for example, the
values that are set in the Genotype column). If messages are not desirable
PhenList function’s argument outputMessages can be set to FALSE meaning
there will be no messages.

Here is an example when the user sets out-messages to FALSE:

> dataset1 <- read.csv("./PhenStat/extdata/test.csv")

# Default behaviour with messages

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Sparc/Sparc’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

# Out-messages are switched off

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc",

outputMessages=FALSE)

# There are no messages!

2.1 Terminology Unification

We define ”terminology unification” as the terminology used to describe data
(variables) that are essential for the analysis. The PhenStat package uses
the following nomenclature for the names of columns: ”Sex”, ”Genotype”,
”Batch” or ”Assay.Date” and ”Weight”. In addition, expected sex values are
”Male” and ”Female” and missing value is NA. PhenList function creates
a copy of the dataset and then uses internal arguments that help to map
columns and values from user’s naming system into the package’s nomencla-
ture. The original file with the dataset stays unchanged since all changes
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take place within PhenList object. Please note ”Assay.Date” is renamed to
”Batch” automatically.

The following PhenList function’s arguments have to be specified to enable
terminology unification to match expected columns to user names:

• dataset.colname.batch allows the user to define column name within
dataset for the batch effect if this column name is other than ”Batch”
or ”Assay.Date” (user’s definition has a priority over ”Assay.Date”),

• dataset.colname.genotype allows the user to define column name within
dataset for the genotype info if this column name is other than ”Geno-
type”,

• dataset.colname.sex allows the user to define column name within dataset
for the sex info if this column name is other than ”Sex” in the dataset,

• dataset.colname.weight allows the user to specify column name within
dataset for the weight info if this column name is other than ”Weight”
in the dataset,

• dataset.values.missingValue allows the user to specify value used as
missing value in the dataset if other than NA,

• dataset.values.male allows the user to define value used to label ”males”
in the dataset if other than ”Male”,

• dataset.values.female allows the user to specify value used to label ”fe-
males” in the dataset if other than ”Female” value has been used.

In the example below dataset’s values for females and males are 1 and 2
accordingly. Those values are changed to ”Female” and ”Male”.

> dataset_test <- read.csv("./PhenStat/extdata/test3.csv")

> test <- PhenList(dataset=dataset_test,

dataset.clean=TRUE,

dataset.values.female=1,

dataset.values.male=2,

testGenotype="Mysm1/+")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’
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2.2 Filtering

Filtering is required, as the statistical analysis requires there to be only two
genotype groups for comparison (e.g. wild-type versus knockout). Thus the
function PhenList requires users to define the reference genotype (manda-
tory argument refGenotype with default value ”+/+”) and test genotype
(mandatory argument testGenotype). If the PhenList function argument
dataset.clean is set to TRUE then all records with genotype values others
than reference or test genotype are filtered out. The user may also specify
hemizygotes genotype value (argument hemiGenotype) when hemizygotes are
treated as the test genotype. This is necessary to manage sex linked genes,
where the genotype will be described differently depending on the sex. Con-
sider the following example of a knockout of a X-linked gene. In this situ-
ation, Table ?? describes the possible genotype labels and which should be
compared biologically.

Sex Reference genotype Test genotype Heterozygous genotype
Female +/+ KO/KO +/KO
Male +/+ KO/Y

Table 3: Example of the dataset with sex linked genes

With the dataset described in Table ?? where hemiGenotype argument of
the PhenList function is defined as ”KO/Y”, the actions of the function are:
”KO/Y” genotypes are relabelled to ”KO/KO” for males; females ”+/KO”
heterozygous are filtered out.

> dataset1 <- read.csv("sex_linked_genes.csv")

> test <- PhenList(dataset=dataset1,

testGenotype="KO/KO",

refGenotype="+/+",

hemiGenotype="KO/Y")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Warning:

Hemizygotes ’KO/Y’ have been relabeled to test genotype ’KO/KO’.

If you don’t want this behaviour then don’t define ’hemiGenotype’ argument.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’KO/KO’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’
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If a user would like to switch off filtering, (s)he can set PhenList function’s
argument dataset.clean to FALSE (default value is TRUE). In the following
example the same dataset is processed successfully passing the checks proce-
dures (see section ??) when dataset.clean is set to TRUE and fails at checks
otherwise.

> dataset <- read.csv("test_3genotypes.csv")

> test<-PhenList(dataset,

testGenotype="Mysm1/+")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Warning:

Dataset has been cleaned by filtering out records with genotype value

other than test genotype ’Mysm1/+’ or reference genotype ’+/+’.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

# Filtering is switched off

> test<-PhenList(dataset,

testGenotype="Mysm1/+",

dataset.clean=FALSE)

Warning:

Dataset’s ’Batch’ column is missed.

You can define ’dataset.colname.batch’ argument to specify column

for the batch effect modelling. Otherwise you can only fit a glm.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’HOM’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

********* Errors start *********

Check failed:

Dataset’s ’Genotype’ column has to have two values.

You can define ’testGenotype’ and ’refGenotype’ arguments to automatically

filter out records with genotype values other than specified.

Alternatively you can define ’hemiGenotype’ and ’testGenotype’ arguments to relabel hemizygotes to homozygotes.

********* Errors end ***********
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Filtering also takes place when there are records that do not have at least
two records in the dataset with the same genotype and sex values.

Consider the following example of the genotype and sex values in the dataset:

Sex Reference genotype Test genotype
Female +/+ Mysm1/+
Male +/+ Mysm1/+
unsexed Mysm1/+ (1 record only)

Table 4: Example of the dataset with 3 sex values

When dataset.clean argument’s is set to TRUE all ”unsexed” records are
filtered out since there are no records for genotype ”+/+” and only one
record for ”Mysm1/+”.

2.3 Dataset Checks

After terminology unification and filtering tasks, PhenList function checks
the dataset availability for the statistical analysis:

• column names and sex values are there and described in the package’s
nomenclature,

• test and reference genotype records are in the dataset,

• there are at least two records for each genotype/sex values combination.

If one of the checks fails, the function stops and the PhenList object is not
created. In the following example ”Sex” column is missed in the dataset and
the checks fail. Note, a dataset can consist of one sex but a sex column is
still required to ensure the appropriate model is fitted.

> dataset <- read.csv("test_noSexColumn.csv")

> test<-PhenList(dataset,testGenotype="Mysm1/+")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’

and will be used for the batch effect modelling.

********* Errors start *********

Check failed:

Dataset’s ’Sex’ column is missed.

********* Errors end ***********
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Next example shows the results of the dataset described in the previous
section ?? : three sex values and not enough records for the ”unsexed” sex
and both genotype values.

> dataset <- read.csv("test_3sexes.csv")

> test<-PhenList(dataset,

testGenotype="Mysm1/+")

...

Warning:

Since dataset has to have at least two data points for each genotype/sex combination

and there are not enough records for the combination(s): ’+/+’/’unsexed’ (0),

’Mysm1/+’/’unsexed’ (1), appropriate sex records have been filtered out from the dataset.

...

# Filtering is switched off

> test<-PhenList(dataset,

testGenotype="Mysm1/+",

dataset.clean=FALSE)

...

********* Errors start *********

Check failed:

Dataset’s ’Sex’ column has to have one or two values and currently the data has more than two.

Check failed:

Dataset’s ’Sex’ column has ’Female’, ’Male’, ’unsexed’ values

instead of ’Female’ and/or ’Male’ values only.

Please delete records with sex(es) ’unsexed’ from the dataset.

Check failed:

Dataset should have at least two data points for each genotype/sex combination.

At the moment there are no enough data points for the following combination(s):

’+/+’/’unsexed’ (0), ’Mysm1/+’/’unsexed’ (1).

********* Errors end ***********

Many checking failures will be avoided when dataset.clean argument of the
PhenList function is set to TRUE (default value). See examples in this and
in the previous section ??.
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2.4 PhenList Object

The output of the PhenList function is the PhenList object that contains a
cleaned dataset (PhenList object’s section dataset), simple statistics about
dataset columns and additional information.

The example below shows how to print out the whole cleaned dataset and
how to view the statistics about it (output is shown in Table ??).

> dataset1 <- read.csv("./PhenStat/extdata/test.csv")

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc", outputMessages=FALSE)

> test$dataset

...

> test$dataset.stat

...

Table ?? shows the content of the PhenList object’s section dataset.stat and
describes the data focusing on the columns of the dataset. Each column
is a variable with summary description. The description includes: whether
variable is numerical or not, whether variable’s classed continuous (variability
is more than 0.5%), number of levels, number of data points and for the
numerical variables various summary measures (mean, standard deviation,
minimal and maximal values).

PhenList object has stored many characteristics about the data: reference
genotype, test genotype, hemizygotes genotype, original column names, etc.

An example is given below.

> dataset2 <- read.csv("./PhenStat/extdata/test2.csv")

> test2 <- PhenList(dataset=dataset2,

testGenotype="Arid4a/Arid4a",

dataset.colname.weight="Weight.Value")

> test2$testGenotype

[1] "Arid4a/Arid4a"

> test2$refGenotype

[1] "+/+"

> test2$dataset.colname.weight

[1] "Weight.Value"
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Variable Num Cont Levels # Mean StdDev Min Max
Age.In.Weeks TRUE FALSE 10 468 14 0.21 13.1 14.6
Batch FALSE FALSE 49 468 NA NA NA NA
Birth.Date FALSE FALSE 111 468 NA NA NA NA
Bone.Area TRUE TRUE 248 463 9.6 0.84 7.46 11.73
Bone.Mineral.Content TRUE TRUE 405 463 0.48 0.06 0.31 0.64
Bone.Mineral.Density TRUE TRUE 120 463 0.05 0 0.04 0.06
Cohort.Name FALSE FALSE 59 468 NA NA NA NA
Colony.Name FALSE FALSE 76 468 NA NA NA NA
Colony.Prefix FALSE FALSE 76 468 NA NA NA NA
Core.Strain FALSE FALSE 1 468 NA NA NA NA
Tissue.Mass TRUE TRUE 427 463 35.22 5.3 20.44 49.86
Fat.Mass TRUE TRUE 385 463 14.92 3.35 4.52 23.21
Fat.Percentage TRUE TRUE 403 463 42.01 5.16 19.26 55.21
Full.Strain FALSE FALSE 9 468 NA NA NA NA
Sex FALSE FALSE 2 468 NA NA NA NA
Gene.Name FALSE FALSE 76 468 NA NA NA NA
Genotype FALSE FALSE 2 468 NA NA NA NA
Lean.Mass TRUE TRUE 369 463 20.31 2.81 14.84 28.8
Mouse FALSE FALSE 468 468 NA NA NA NA
Mouse.Name FALSE FALSE 468 468 NA NA NA NA
Base.Length TRUE FALSE 17 468 10.19 0.32 9.3 10.9
Pipeline FALSE FALSE 1 468 NA NA NA NA
Strain FALSE FALSE 2 468 NA NA NA NA
Weight TRUE TRUE 183 468 34.95 5.09 20.4 48.4

Table 5: Simple statistics about dataset variables – dataset.stat content

3 Statistical Analysis

The PhenStat package provides two methods (frameworks) for statistical
analysis: Linear Mixed Models for continuous data and Fisher Exact Test
for categorical data. For both the MM and FE framework, the statistical
significance is assessed, the biological significance measured through an effect
size estimate and finally the genotype effect is classified e.g. ”If phenotype
is significant - both sexes equally”.

PhenStat’s function testDataset works as a manager for the different statis-
tical analyses methods. It checks the dependent variable, runs the selected
statistical analysis framework and returns modelling/testing results in the

15



PhenTestResult object (see Figure ??).

3.1 Manager for Analysis Methods – testDataset func-
tion

The testDataset function’s argument phenList defines the dataset stored in
PhenList object.

Function’s argument depVariable defines the dependent variable.

Function’s argument method defines which statistical analysis framework to
use. The default value is ”MM” which stands for mixed model framework.
To perform Fisher Exact Test, the argument method is set to ”FE”.

Function’s argument dataPointsThreshold defines the required number of
data points in a group (subsets per genotype and sex combinations) for a
successful analysis within ”MM”. The default value is 4. The minimal value
is 2.

The testDataset function performs basic checks which ensure the statistical
analysis would be appropriate and successful:

1. depVariable column is present in the dataset;

2. depVariable is numeric for Mixed Model (MM) framework, otherwise
Fisher Exact Test (FE) is performed;

3. Variability check 1 (whole column): depVariable column values are
variable enough (the ratio of different values to all values in the column
≥ 0.5%) for MM framework, otherwise FE framework is recommended;

4. Variability check 2 (variability within a group): there are enough data
points in subsets per genotype/sex combinations. The number of val-
ues from depVariable column should exceed dataPointsThreshold in all
subsets, otherwise FE framework is recommended;

5. Variability check 3 (variability for Weigth column) applied only when
equation argument value is set to ”withWeight”: there are enough data
points in subsets per genotype/sex combinations. The number of values
from Weight column should exceed dataPointsThreshold in all subsets,
otherwise equation ”withoutWeight” is used;

6. Number of depVariable levels is 10 or less for the FE framework.
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If issues are identified, clear guidance is returned to the user. After the
checking procedures, testDataset function runs the selected framework to
analyse dependent variable.

To ensure flexibility and debugging, the framework can comprise of more
than one stage. For instance, the more complex MM framework has the
functionality to operate in two stages.

testDataset function’s argument callAll instructs the package to run all stages
of the framework one after another when set to TRUE (default behaviour).

However, when callAll flag is set to FALSE it instructs the testDataset func-
tion to run only the first stage of the selected framework. For instance,
testDataset function runs startModel and after that finalModel functions of
the MM framework if the argument callAll is set to TRUE. More information
about this two stages process is provided in section ??.

If framework contains only one stage (such as the Fisher Exact Test case)
then testDataset function runs that single stage regardless of the callAll ar-
gument’s value.

The example how to call MM and FE framework is given below.

> dataset1 <- read.csv("./PhenStat/extdata/test.csv")

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc", outputMessages=FALSE)

> result_MM_Lean.Mass <- testDataset(test,depVariable="Lean.Mass", method="MM",

dataPointsThreshold=2)

...

> result_FE_Length <- testDataset(test,depVariable="Nose.To.Tail.Base.Length", method="FE")

..

Further details about the MM and FE framework are in the next two sub-
sections.

3.2 Mixed Model Framework

First, we will describe the mixed model top-down methodology which starts
with a fully loaded model and ends with final reduced model and genotype
effect evaluation procedures as described in ?.
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3.2.1 Motivation

Through high throughput phenotyping programs, such as EUMODIC , where
data was systematically collected on one genetic background, the significant
sources of variation can be identified and it became obvious that batch (de-
fined here as those readings collected on a particular day) can lead to large
variation in phenotyping variables ?.

Figure ??, demonstrates variation seen in control data from a standardised
phenotyping pipeline.

Figure ??, demonstrates using artificially constructed data how mathemati-
cally this can arise from batch variation adding variability to the data. With
this batch to batch variation, data collected on the same day will be more
similar than other days, hence the readings are correlated and the assump-
tion, of many statistical tests, of independent readings cannot be made.
Furthermore, the variation with batch, means that this has to be consid-
ered to be able to assign causality i.e. if there is a difference in readings is
this due to batch or genotype difference. Therefore these observations have
significant implications for the data analysis of both high throughput and
secondary phenotyping experiments where use of small batches of animals is
common.

Figure 2: Representative time course plot showing the batch to batch varia-
tion in control data for male mice from a B6Brd;B6N-Tyrc-Brd genetic back-
ground from WTSI MGP program. Example shown is the variation seen in
the lean mass variable measured in grams. For each day, data is collected a
box plot is drawn as a five point summary indicating the minimum, 1st quar-
tile, median, 3rd quartile and maximum. Shown in red is the global median
fat mass value.

One option would be to ensure all animals for a line are processed in one day
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Figure 3: Artificially constructed data demonstrating how batch variation
affects data distribution with time. In this artificial data, the variable of in-
terest was assumed to be biologically randomly normally distributed variable
with mean=7, standard deviation=1.5. To represent the batch effect, 300 as-
says days were generated with a randomly distributed batch effect (mean=0,
standard deviation 0.5) which was added to the dependent variable biological
mean before randomly sampling the dependent variable.

with concurrent controls. However, it is challenging and costly to produce
sufficient animals of the right age within a narrow time point for an exper-
iment. Consider the WTSI Sanger Mouse Genetics Project which requires
7 male and 7 female homozygote mice, generated by a heterozygote cross; a
best case scenario would require 14 mating pairs being assembled at the same
point in time ?. In order to generate these mating pairs, there would be a
staged breeding process to generate the mice which involve several rounds of
expansions depending on breeding success. This best case scenario is com-
monly hampered by fecundity, viability or other phenotypic problems within
a line and hence to achieve a one batch pipeline the pairing number needs
increasing significantly. In contrast, by accepting smaller numbers of mice
in multiple batches, lower breeding pair numbers can be established. The
smaller scale allows the generation of mice to answer firstly developmental
and breeding issues and secondly to feed the pipeline over time and subse-
quent litters. As soon as mice are produced at the right age, these are feed
into the pipeline. This batch approach, allows the pipeline to utilise ani-
mals that would otherwise be discarded as the process had not generated the
required experimental sample size which ensure meet the high throughput
pipeline needs and also help reduce the breeding cost per line. Furthermore,
the operational constraints arising in a high throughput environment make
optimal experimental design impractical; typically mutant and control mice
are not assayed on the same day, so any phenotypic differences could be
due to genotype or to subtle changes in the environment (e.g. temperature
fluctuations or pipetting errors).
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An alternative method, linear mixed models (MM) are a class of statistical
models suited to modelling multiple sources of variability on a phenotype,
where some explanatory factors (such as sex, weight and mutant genotype)
are assumed to take fixed values that affect the population mean, whilst
others such as batch are treated as affecting the covariance structure; animals
from the same batch will have correlated phenotypes. ? demonstrated the
utility and benefits of a MM framework for high throughput phenotyping
data. The methodology used there has been developed further and refined
for this package.

3.2.2 Theory

There are two possible start models, depending on whether weight is in-
cluded as a factor (see ?? for the model without weight and ?? for the model
including weight).

depV ariable v Genotype + Sex + Genotype ∗ Sex (Eq1)

depV ariable v Genotype + Sex + Genotype ∗ Sex + Weight (Eq2)

We reference to the ?? and ?? as to the models with ”loaded” mean struc-
ture and random batch-specific intercepts or fully loaded model (see Figure
??).

The final model construct is influenced by a number of criteria. These crite-
ria, such as fixed effects, batch effect and the structure of residual variances,
can be either evaluated from the dataset or defined by user (see Figure ??).
The following criteria (effects) are considered:

• Batch effect (batch variation). Considered only when batch column is
present in the dataset.

• Residual variances homogeneity where homogeneous residual variances
means the variance for all genotype levels is considered equivalent.

• Body weight effect. Considered only when Eq2 is used.

• Sex effect. Considered only when there are more than one sex in the
dataset.

• Genotype by sex interaction effect. Considered only when there are
more than one sex in the dataset.
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Figure 4: MM framework steps: model selection process and model reducing
by using significance of fixed effects.

The selection of model is influenced by the batch effect (random effects) —
is batch in the dataset, and if so, is it significant in explaining variation in
the dependent variable — and a covariance structure for the residuals that
can be homogeneous or heterogeneous (see Figure ?? Step 1-3). The selected
model is then modified by reducing non-significant effects (see Figure ?? Step
4 and Figure ??).

When the final model is selected and reduced, the genotype effect is assessed
by comparing a genotype and null model fitted with maximum likelihood
evaluation method (ML). Finally, the final genotype model is refitted using
restricted maximum likelihood evaluation method (REML) to get unbiased
estimates of the variance parameters (see Figure ?? Step 5,6 and Figure
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Figure 5: MM framework: start model formula and final model formula cre-
ation based on the dataset and significances of the effects (can be estimated
or defined by user).
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Figure 6: MM framework: different models that are considered.
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??).

3.2.3 Implementation

There are two functions in the PhenStat package that implements the mixed
model framework:

• startModel function evaluates model’s criteria and stores the result in
the PhenTestResult object;

• finalModel function builds the final model using the model’s criteria
from PhenTestResult object and fits the model using restricted maxi-
mum likelihood method (REML).

By default, both functions will be called from testDataset manager sequen-
tially, that is why startModel function’s arguments and specific for MM
method testDataset function’s arguments concur. In the text above we men-
tion startModel function’s arguments only.

The equation type is defined by startModel function’s argument equation that
can take value ”withWeight” which is default one and ”withoutWeight”. The
argument defines the presence or absence of body weight effect in the model
(see ?? and ??). In case when there are no body weight records in the dataset
startModel sets equation argument to ”withoutWeight” automatically.

startModel function creates start fully loaded model and modifies it after
testing of different hypothesis. As was described in the previous theory
section the model view is influenced by the number of criteria. Each cri-
teria or effect (body weight effect, residual variances homogeneity, sex effect,
genotype by sex interaction effect, batch effect) is evaluated individually
and TRUE/FALSE values are assigned to the appropriate sections of Phen-
TestResult object based on evaluation results. TRUE value means that effect
is significant and will be modelled. FALSE value means deletion of the effect
from the model.

The package allows to assign user defined values to the effects of the model.
If user would like to assign TRUE/FALSE values to the effects of the model
that differ from calculated ones then (s)he has to define keepList argument
of startModel functions which is a list of TRUE/FALSE values for each
one criterion in the following order: is batch effect significant, are resid-
ual variances homogeneous, is body weight effect significant, is sex effect
significant, is sex by genotype interaction effect significant. For instance,
keepList=c(TRUE, TRUE, TRUE, TRUE, TRUE) defines the fully loaded
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model will all possible fixed effects with homogeneous residual variances; in
turn keepList=c(FALSE, FALSE, TRUE, TRUE, TRUE) defines the fully
loaded model without random effects and with heterogeneous residual vari-
ances.

startModel function checks user defined effects for consistency (for instance,
if there are no ”Weight” column in the dataset then weight effect can’t be as-
signed to TRUE, etc.) and prints out both calculated and user defined effects
(only when outputMessages argument is set to TRUE) for the user’s conve-
nience. Note: user defined effects have a priority over calculated (evaluated)
effects.

The result of the startModel function is MM start model with reduced non-
significant effects stored in the PhenTestResult object together with the eval-
uated or user defined effects. It is important to mention here the convergency
problem. If for some reason, the selected model is failing to converge we sim-
plify it by selecting the similar but simplier model and try to fit again. For
instance, if model with heterogeneous residuals is not converging then model
with homogeneous residuals will be selected.

The next step of MM framework: evaluation of genotype effect and fitting of
selected model using REML is implemented in package’s function finalModel.
The results are added into the PhenTestResult object. PhenTestResult object
at the end of the MM framework contains model formula, significances of the
effects, genotype evaluation results and model fitting results including effect
sizes.

By default both functions (startModel and finalModel) will be called from
testDataset manager one after another. We’ve made this logical separation of
functionality in order to add more flexibility for the statisticians. Basically,
it means that a user can check the evaluation of fixed effects and the selected
model before final model fitting. This kind of ”debugging” functionality
allows the user to change some of the arguments of functions and start the
model building process from scratch if needed.

We believe that the possibility to change mixed models framework behaviour
as described above will help users to go deeper into details of the modelling
process, as well as debug and compare the results from different models.

# Default behaviour

> result <- testDataset(test,depVariable="Bone.Area", equation="withoutWeight")

Information:

Dependent variable: ’Bone.Area’.
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Information:

Method: Mixed Model framework.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Information:

Equation: ’withoutWeight’.

Information:

Perform all MM framework stages: startModel and finalModel

# Perform each step of the MM framework separatly

> result <- testDataset(test,depVariable="Bone.Area", equation="withoutWeight",callAll=FALSE)

Information:

Dependent variable: ’Bone.Area’.

Information:

Method: Mixed Model framework.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Information:

Equation: ’withoutWeight’.

# Estimated model effects

> result$model.effect.batch

[1] TRUE

> result$model.effect.variance

[1] TRUE

> result$model.effect.weight

[1] FALSE

> result$model.effect.sex

[1] TRUE

> result$model.effect.interaction

[1] FALSE

> result$numberSexes

[1] 2

# Change the effect values: interaction effect will stay in the model

> result <- testDataset(test,depVariable="Bone.Area",

equation="withoutWeight",keepList=c(TRUE,TRUE,FALSE,TRUE,TRUE),callAll=FALSE)

Information:
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Dependent variable: ’Bone.Area’.

Information:

Method: Mixed Model framework.

Information:

User’s values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=TRUE.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Warning:

Calculated values differ from user defined values for model effects.

Information:

Equation: ’withoutWeight’.

> result <- finalModel(result)

> summaryOutput(result)

...

3.2.4 Diagnostics

There are two functions we’ve implemented for the diagnostics and classifi-
cation of MM framework results: testFinalModel and classificationTag.

The first one performs diagnostic tests to assess the MM quality of fit. This
includes normality tests for the two genotype levels residuals, BLUPs (best
linear unbiased prediction) and “rotated” residuals (?) (last two only if appli-
cable). There is only one argument of the function which is PhenTestResult
object. There are no arguments checks assuming that function is called inter-
nally from the finalModel function. Consequently if calling directly it should
be used with precaution.

testFinalModel returns list of the following values:

• Reference genotype value.

• Normality test result (p-value) for the reference genotype’s residuals.

• Test genotype value.

• Normality test result (p-value) for the test genotype’s residuals.
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• BLUPs normality test result (p-value); applicable only when there is
batch random effects in the model, otherwise set to NA.

• “Rotated” residuals normality test result (p-value); applicable only
when there is batch random effects in the model, otherwise set to NA.

BLUP in statistics is best linear unbiased prediction and is used in linear
mixed models for the estimation of random effects. See tutorial BLUPs for
more details.

“Rotated” residuals are constructed by multiplying the estimated marginal
residual vector by the Cholesky decomposition of the inverse of the estimated
marginal variance matrix. The resulting “rotated” residuals are used to con-
struct an empirical cumulative distribution function and pointwise standard
errors. See Cholesky Residuals for Assessing Normal Errors in a Linear Model
with Correlated Outcomes: Technical Report for more details about “ro-
tated” residuals.

3.2.5 Classification Tag

classificationTag function returns a classification tag to assign a sexual di-
morphism assessment of the phenotypic change from the results of MM frame-
work.

> testFinalModel(result)

[1] "+/+" "0.0560133469740866" "Sparc/Sparc"

[4] "0.816672883686998" "0.345325318416593" "0.0480124939288989"

> classificationTag(result)

[1] "With phenotype threshold value 0.01 - both sexes equally"

When the function is called through vectorOutput function, the tag shown
in Figure ?? will be proceeded by the phrase “If phenotype is significant”,
meaning that globally the test has not assessed whether there was a statisti-
cal significant difference just that if there was this would be the classification
if it was statistically significant. When the function is called through sum-
maryOutput function or directly there is an argument phenotypeThreshold
(default value is 0.01), which sets the significance threshold of whether there
is a phenotype of interest. If globally, the analysis indicates there is a sta-
tistically significant phenotype then the classification tag is appended to the
phrase “With phenotype threshold value XXX”.

The Mammalian Phenotype Ontology is under development as a community
effort to provide standard terms for annotating mammalian phenotypic data
and is housed and managed by the JAXS laboratory (see MP ontology).
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Figure 7: Assigning a classification tag. The output of the mixed model
framework is queried to assign a classification tag of how the observed phe-
notype was observed across the two sexes. Within the decision tree, the
question “Is the effect the same for both sexes? “ is asking whether mathe-
matically was there an interaction between the genotype and sex. Occasion-
ally the procedure will find that there was a significant interaction but when
it comes to identifying how this occurred and quantifying the effect for each
sex, there is insufficient power. In this scenario the classification returned
states that it “cannot classify the effect”.
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Figure 8: Assigning a Mammalian Phenotype (MP) ontology term in the
presence of sexual dimorphism.

With the mixed model implementation, the output is very rich and a clas-
sification tag can be appended to the MP term to give richer information
on the observed phenotype (e.g. abnormal circulating sodium levels – both
sexes equally). Figure ??, details the decision tree that can be used with the
MM output to interpret the results such a ontology term can be discerned
and an annotation tag added when appropriate.

3.2.6 Model Failures and Jitter

In this section we would like to discuss failure of model fitting and the poten-
tial use of jitter. At times, the model fitting process with the MM methodol-
ogy would struggle to fit a model. In these instances, the PhenStat method
would return an error message stating that the software can’t fit the the
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Figure 9: Mean corpuscular volume distribution for a dataset comparing a
wildtype group (coded as 1) and a knockout group (coded as 3) of male mice.
When PhenStat processes this data, models are not estimated as the software
fails to converge on a solution and estimate the parameters, thus the software
returns the error “Error: Can’t fit the model ... Try to add jitter or RR plus
method.”

model and sugest that you could try jitter or an alternate method such as
reference range approach. For example, this was seen with a Mean Corpus-
cular Volume dataset which had data only for male mice and the knockout
mice had little variation as the majority of readings were 43 fl (shown in
Figure ??).

> data <- read.csv("PhenStat/inst/extdata/test_jitter.csv")

> test <- PhenList(data, testGenotype="3", refGenotype="1",

dataset.values.missingValue="null")

> result <- testDataset(test, depVariable="MCV", equation="withoutWeight")

Information:

Dependent variable: ’MCV’.

Information:

Perform all MM framework stages: startModel and finalModel.

Information:

Method: Mixed Model framework.

Error:

Can’t fit the model MCV ~ Genotype. Try to add jitter or RR plus method.

31



Jitter is a function that adds a small amount of noise to a variable. The
noise is added randomly at 1000th of the signal difference for that variable.
In the example shown, the additional of noise allows the model to converge
and estimate the values.

Code to add jitter and process the new variable:

> data$MCVWITHjitter <- jitter(data$MCV,

factor =((max(data$MCV) - min(data$MCV)) / 1000))

> test <- PhenList(data, testGenotype="3", refGenotype="1",

dataset.values.missingValue="null")

> result <- testDataset(test,depVariable="MCVWITHjitter",equation="withWeight")

Information:

Dependent variable: ’MCVWITHjitter’.

...

> summaryOutput(result)

Test for dependent variable: MCVWITHjitter

Method: Mixed Model framework

Was batch significant? TRUE

Was variance equal? FALSE

Was there evidence of sexual dimorphism? no (p-value NA)

Final fitted model: MCVWITHjitter ~ Genotype

Model output:

Genotype effect: 0.00789132

Classification tag: With phenotype threshold value 0.01 - a significant change for the

one genotype tested

Value Std.Error DF t-value p-value

(Intercept) 46.293557 0.4869005 238 95.078065 2.542604e-191

Genotype3 1.307933 0.4792576 238 2.729081 6.825327e-03

3.3 Fisher Exact Test Framework

The Fisher Exact Test is implemented with basic R functions from the stats
package after the construction of count matrices (also called chi squared
tables) from the dataset.

Together with count matrices we also calculate percentage matrices and
statistics for the chi squared tables (using ”vcd” R package ”Visualizing Cat-
egorical Data”). As a measure of change we calculate the maximum effect
sizes.

From the chi squared table statistical significance is assessed using a Fisher
Exact Test whilst the biological significance is estimated by an effect size (see
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section ?? for more details).

This is calculated separately for 3 subsets (if there are multiple sex values in
the dataset):

• combined dataset (regardless the sex values),

• males only subset,

• females only subset.

A Fisher Exact Test was chosen as most abnormal phenotype traits are rare
event thus the signal is low. Batch is not considered significant because
day to day variation does not effect abnormality call for these types of vari-
ables.

All results are stored in PhenTestResult object:

> dataset_cat <- read.csv("./PhenStat/extdata/test_categorical.csv")

> test_cat <- PhenList(dataset_cat,testGenotype="Aff3/Aff3")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modeling.

Warning:

Dataset has been cleaned by filtering out records with genotype value

other than test genotype ’Aff3/Aff3’ or reference genotype ’+/+’.

Warning:

Dataset’s ’Weight’ column is missed.

You can define ’dataset.colname.weight’ argument to specify column

for the weight effect modeling. Otherwise you can only use mixed model equation ’withoutWeight’.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Aff3/Aff3’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

> result_cat <- testDataset(test_cat,

depVariable="Thoracic.Processes",

method="FE")

Information:

Dependent variable: ’Thoracic.Processes’.

Information:

Method: Fisher Exact Test framework.

> result_cat$depVariable
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[1] "Thoracic.Processes"

> result_cat$method

[1] "FE"

> result_cat$numberSexes

[1] 2

# Chi squared table for all data

> result_cat$model.output$count_matrix_all

+/+ Aff3/Aff3

Abnormal 144 12

Normal 755 1

# Chi squared table for males only records

> result_cat$model.output$count_matrix_male

+/+ Aff3/Aff3

Abnormal 61 5

Normal 392 1

# Percentage matrix for all data

> result_cat$model.output$percentage_matrix_all

+/+ Aff3/Aff3 ES change

Abnormal 16 92 76

Normal 84 8 76

# Percentage matrix for females only records

> result_cat$model.output$percentage_matrix_female

+/+ Aff3/Aff3 ES change

Abnormal 19 100 81

Normal 81 0 81

# Matrix statistics for all data

> result_cat$model.output$stat_all

X^2 df P(> X^2)

Likelihood Ratio 36.466 1 1.5536e-09

Pearson 52.600 1 4.0890e-13

Phi-Coefficient : 0.24

Contingency Coeff.: 0.234

Cramer’s V : 0.24

# Matrix statistics for males only records

> result_cat$model.output$stat_male

X^2 df P(> X^2)
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Likelihood Ratio 14.610 1 1.322e-04

Pearson 23.479 1 1.263e-06

Phi-Coefficient : 0.226

Contingency Coeff.: 0.221

Cramer’s V : 0.226

# Effect size for all data

> result_cat$model.output$ES

[1] 76

# Effect size for females only records

> result_cat$model.output$ES_female

[1] 81

# Fisher Exact Test results for all data

> result_cat$model.output$all

Fisher’s Exact Test for Count Data

data: count_matrix_all

p-value = 4.844e-09

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.0003770171 0.1096287774

sample estimates:

odds ratio

0.0159923

# p-value for all data

> result_cat$model.output$all$p.value

[1] 4.844291e-09

The same data as shown in examples can be obtained by using output func-
tions of the package: summaryOutput, vectorOutput and vectorOutputMatri-
ces. See section ?? for more details.

If there is only one level for the dependent variable in the dataset e.g. ”Nor-
mal“ then the package will add level ”Other” into the count matrices for
consistency. All values for this level will be set to 0. The following is an
example of such case:

> test2 <- PhenList(dataset=read.csv("test_categorical_normal.csv"),

> result2 <- testDataset(test2,depVariable="Thoracic.Processes", method="FE")

> levels(result2$model.dataset$Thoracic.Processes)

[1] "Normal"
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> summaryOutput(result2)

Test for dependent variable: Thoracic.Processes

Method: Fisher Exact Test framework

Model output:

All data p-val: 1

All data effect size: 0%

Males only p-val: 1

Males only effect size: 0%

Females only p-val: 1

Females only effect size: 0%

Matrix ’all’:

+/+ Aff3/Aff3

Normal 895 13

Other 0 0

Percentage matrix ’all’ statistics:

+/+ Aff3/Aff3 ES change

Normal 100 100 0

Other 0 0 0

...

3.3.1 Classification Tag

We’ve implemented the function classificationTag also for the FE framework.
However, in the case of Fisher Exact Test it is not sexual dimorphism clas-
sification, but rather the overall estimation of the signals significance.

In the Table ?? classification tags and observed p-values classification is based
on are presented. The default value of ”phenotypeThreshold” is 0.01. In such
a case X=0.01

4 Output of Results

The PhenStat package stores the results of statistical analyses in the Phen-
TestResult object. For numeric summary of the analysis, there are two func-
tions to present PhenTestResult object data to the user: summaryOutput
that provides a printed summary output and vectorOutput that creates a
vector form output. These output forms were generated for differing users
needs.
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Males only Females only All Classification Tag for X threshold
< X < X < X Significant in males, females and in combined

dataset
< X ≥ X < X Significant in males and in combined dataset
< X < X ≥ X Significant in males and in females datasets
< X ≥ X ≥ X Significant in males dataset only
≥ X < X < X Significant in females and in combined

dataset
≥ X < X ≥ X Significant in females dataset only
≥ X ≥ X < X Significant in combined dataset only
≥ X ≥ X ≥ X Not significant
< X NA < X Significant for the sex tested
NA < X < X Significant for the sex tested

Table 6: p-values from Fisher Exact Tests and classification tag. The default
value of ”phenotypeThreshold” is 0.01. In such a case X=0.01.

4.1 Summary Output

The summaryOutput function supports interactive analysis of the data and
prints results on the screen.

The following is an example of summary output of MM framework:

# Mixed Model framework

> test <- PhenList(dataset=read.csv("./PhenStat/extdata/test.csv"),

testGenotype="Sparc/Sparc",outputMessages=FALSE)

> result <- testDataset(test,

depVariable="Lean.Mass",outputMessages=FALSE)

> summaryOutput(result)

Test for dependent variable: Lean.Mass

Method: Mixed Model framework

Was batch significant? TRUE

Was variance equal? FALSE

Was there evidence of sexual dimorphism? no (p-value 0.102)

Final fitted model: Lean.Mass ~ Genotype + Sex + Weight

Model output:

Genotype effect: 0.371508943

Classification tag: With phenotype threshold value 0.01 - no significant change

Value Std.Error DF t-value p-value

(Intercept) 7.6111388 0.58862654 411 12.9303357 2.512303e-32

GenotypeSparc/Sparc -0.2914357 0.33047985 411 -0.8818562 3.783700e-01

SexMale 1.6407343 0.18080930 411 9.0743913 4.791912e-18
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Weight 0.3430502 0.01808121 411 18.9727422 4.147891e-58

The summary output for MM framework contains metrics indicating the
quality of the fit:

• Intercept is the reference level after all other factors are accounted
for. For example, for equation with weight (??) in fully loaded model
intercept is reference genotype’s female with zero weight.

• Value stands for the estimated coefficient. This number will obviously
vary based on the magnitude of the variable your are inputting into
the regression, but it’s always good to spot check this number to make
sure it seems reasonable.

• Std.Error is a standard error of the coefficient estimate – measure of
the variability in the estimate for the coefficient. Lower is better but
this number is relative to the value for the coefficient.

• DF stands for the “Degrees of Freedom” which is the difference between
the number of observations included in training sample and the number
of variables used in model (intercept counts as a variable).

• t-value of the coefficient estimate is a score that measures whether or
not the coefficient for this variable is meaningful for the model. It is
used to calculate the p-value.

• p-value is variable p-value that represents the probability the variable
is NOT relevant. The smaller is number the more important is variable
(model part). If the number is really small, R will display it in scientific
notation.

For the ”FE” framework results summaryOutput function’s output includes
count matrices, statistics and effect size measures.

test2 <- PhenList(dataset=read.csv("./PhenStat/extdata/test_categorical.csv"),

testGenotype="Aff3/Aff3",outputMessages=FALSE)

result2 <- testDataset(test2,

depVariable="Thoracic.Processes",

method="FE",outputMessages=FALSE)

summaryOutput(result2)

Test for dependent variable: Thoracic.Processes

Method: Fisher Exact Test framework

Model output:

All data p-val: 4.84429148175386e-09

All data effect size: 76%
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Males only p-val: 0.000286667802768362

Males only effect size: 70%

Females only p-val: 1.00779809539594e-05

Females only effect size: 81%

Matrix ’all’:

+/+ Aff3/Aff3

Abnormal 144 12

Normal 755 1

Percentage matrix ’all’ statistics:

+/+ Aff3/Aff3 ES change

Abnormal 16 92 76

Normal 84 8 76

Matrix ’all’ statistics:

X^2 df P(> X^2)

Likelihood Ratio 36.466 1 1.5536e-09

Pearson 52.600 1 4.0890e-13

Phi-Coefficient : 0.24

Contingency Coeff.: 0.234

Cramer’s V : 0.24

Matrix ’males only’:

...

4.2 Vector Format

vectorOutput function was developed for large scale application where au-
tomatic implementation would be required. As such, each value within the
output vector is strictly defined and depends only on the statistical analysis
method that has been used. The main idea here is that vector format is
specified and is the same regardless the analysis framework.

Genotype

> vectorOutput(result)

Method

"MM framework, linear mixed-effects model, equation with weight"

Dependent variable

"Lean.Mass"

Batch included

"TRUE"

Residual variances homogeneity

"FALSE"

Genotype contribution

"0.371508943144266"
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Genotype estimate

"-0.29143571549456"

Genotype standard error

"0.330479850268177"

Genotype p-val

"0.378369997588029"

Sex estimate

"1.64073430331594"

Sex standard error

"0.180809296427475"

Sex p-val

"4.79191190571249e-18"

Weight estimate

"0.343050209791982"

Weight standard error

"0.0180812139273457"

Weight p-val

"4.1478905048872e-58"

...

In the Table ?? vector output values are described.

As was mentioned above vectorOutput format is the same for both frame-
works. However, in case of ”FE” many values are not defined. For exam-
ple:

> vectorOutput(result_cat)

Method

"Fisher Exact Test"

Dependent variable

"Thoracic.Processes"

Batch included

NA

Residual variances homogeneity

NA

Genotype contribution

NA

Genotype estimate

"76"

Genotype standard error

NA

Genotype p-val

"4.84429148175386e-09"

Sex estimate

NA

Sex standard error

NA

Sex p-val

40



#
N

am
e

V
al

u
e

F
ra

m
ew

or
k

D
es

cr
ip

ti
on

1
M

et
h
o
d

S
tr

in
g

M
M

an
d

F
E

P
os

si
b
le

va
lu

es
:

”F
E

”,
”M

M
,

li
n
ea

r
m

ix
ed

-e
ff

ec
ts

m
o
d
el

/g
en

er
al

iz
ed

le
as

t
sq

u
ar

es
,

eq
u
at

io
n

w
it

h
w

ei
gh

t/
eq

u
at

io
n

w
it

h
ou

t
w

ei
gh

t”
.

2
D

ep
en

d
en

t
va

ri
ab

le
S
tr

in
g

M
M

an
d

F
E

N
am

e
of

th
e

d
ep

en
d
en

t
va

ri
ab

le
.

3
B

at
ch

in
cl

u
d
ed

T
R

U
E

/F
A

L
S
E

M
M

W
as

b
at

ch
si

gn
ifi

ca
n
t

in
M

M
?

4
R

es
id

u
al

va
ri

an
ce

s
h
om

og
en

ei
ty

T
R

U
E

/F
A

L
S
E

M
M

W
as

va
ri

an
ce

eq
u
al

in
M

M
?

5
G

en
ot

y
p

e
co

n
tr

ib
u
ti

on
N

u
m

er
ic

M
M

an
d

F
E

p
-v

al
u
e

in
d
ic

at
in

g
ge

n
ot

y
p

e
co

n
tr

ib
u
ti

on
.

6
G

en
ot

y
p

e
es

ti
m

at
e

N
u
m

er
ic

M
M

an
d

F
E

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
ge

n
ot

y
p

e
va

lu
e

ca
l-

cu
la

te
d

b
y

M
M

or
eff

ec
t

si
ze

es
ti

m
at

es
in

F
E

.
7

G
en

ot
y
p

e
st

an
d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
co

effi
ci

en
t

es
ti

m
at

e
fo

r
ge

n
ot

y
p

e
in

M
M

.
8

G
en

ot
y
p

e
p
-v

al
N

u
m

er
ic

M
M

G
en

ot
y
p

e
p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
ge

n
ot

y
p

e
is

N
O

T
re

le
va

n
t

in
M

M
.

9
S
ex

es
ti

m
at

e
N

u
m

er
ic

M
M

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
se

x
va

lu
e

ca
lc

u
la

te
d

b
y

th
e

M
M

.
10

S
ex

st
an

d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
co

effi
ci

en
t

es
ti

m
at

e
fo

r
se

x
in

M
M

.
11

S
ex

p
-v

al
N

u
m

er
ic

M
M

S
ex

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
se

x
is

N
O

T
re

le
va

n
t

in
M

M
.

12
W

ei
gh

t
es

ti
m

at
e

N
u
m

er
ic

M
M

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
w

ei
gh

t
va

lu
e

ca
lc

u
-

la
te

d
b
y

th
e

M
M

.
13

W
ei

gh
t

st
an

d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
co

effi
ci

en
t

es
ti

m
at

e
fo

r
w

ei
gh

t
in

M
M

.
14

W
ei

gh
t

p
-v

al
N

u
m

er
ic

M
M

W
ei

gh
t

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
w

ei
gh

t
is

N
O

T
re

le
va

n
t

in
M

M
.

15
G

p
1

ge
n
ot

y
p

e
S
tr

in
g

M
M

an
d

F
E

V
al

u
e

of
re

fe
re

n
ce

ge
n
ot

y
p

e.
16

G
p
1

R
es

id
u
al

s
n
or

m
al

it
y

te
st

N
u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
re

si
d
u
al

s
in

re
fe

re
n
ce

ge
n
ot

y
p

e
su

b
se

t
ar

e
n
or

m
al

ly
d
is

tr
ib

u
te

d
.

17
G

p
2

ge
n
ot

y
p

e
S
tr

in
g

M
M

an
d

F
E

V
al

u
e

of
te

st
ge

n
ot

y
p

e.
18

G
p
2

R
es

id
u
al

s
n
or

m
al

it
y

te
st

N
u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
re

si
d
u
al

s
in

te
st

ge
n
ot

y
p

e
su

b
se

t
ar

e
n
or

m
al

ly
d
is

tr
b
u
te

d
.

19
B

lu
p
s

te
st

N
u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
b
lu

p
s

ar
e

n
or

-
m

al
ly

d
is

tr
b
u
te

d
.

41



#
N

am
e

V
al

u
e

F
ra

m
ew

or
k

D
es

cr
ip

ti
on

20
R

ot
at

ed
re

si
d
u
al

s
n
or

m
al

it
y

te
st

N
u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
ro

ta
te

d
re

si
d
-

u
al

s
ar

e
n
or

m
al

ly
d
is

tr
b
u
te

d
.

21
In

te
rc

ep
t

es
ti

m
at

e
N

u
m

er
ic

M
M

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
in

te
rc

ep
t

va
lu

e
ca

l-
cu

la
te

d
b
y

th
e

M
M

.
22

In
te

rc
ep

t
st

an
d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
co

effi
ci

en
t

es
ti

m
at

e
fo

r
in

te
rc

ep
t

in
M

M
.

23
In

te
ra

ct
io

n
in

cl
u
d
ed

T
R

U
E

/F
A

L
S
E

M
M

In
d
ic

at
es

th
e

in
cl

u
si

on
of

ge
n
ot

y
p

e
b
y

se
x

in
te

ra
ct

io
n

eff
ec

t
in

to
M

M
.

24
In

te
ra

ct
io

n
p
-v

al
N

u
m

er
ic

M
M

In
te

ra
ct

io
n

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

e
in

te
ra

ct
io

n
is

N
O

T
re

le
va

n
t

in
M

M
.

25
S
ex

F
v
K

O
es

ti
m

at
e

N
u
m

er
ic

M
M

an
d

F
E

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
va

lu
e

ca
lc

u
la

te
d

b
y

th
e

M
M

fo
r

fe
m

al
es

in
te

st
ge

n
ot

y
p

e
su

b
se

t
or

eff
ec

t
si

ze
es

ti
m

at
e

ca
lc

u
la

te
d

fr
om

ch
i

ta
b
le

fo
r

fe
m

al
es

on
ly

su
b
se

t
in

F
E

.
26

S
ex

F
v
K

O
st

an
d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
”S

ex
F

v
K

O
es

ti
m

at
e”

in
M

M
.

27
S
ex

F
v
K

O
p
-v

al
N

u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

at
fe

m
al

es
gr

ou
p

fr
om

te
st

ge
n
ot

y
p

e
su

b
se

t
co

n
tr

ib
u
ti

on
in

to
M

M
is

N
O

T
re

le
va

n
t.

28
S
ex

M
v
K

O
es

ti
m

at
e

N
u
m

er
ic

M
M

an
d

F
E

E
st

im
at

ed
co

effi
ci

en
t

th
at

d
es

cr
ib

es
va

lu
e

ca
lc

u
la

te
d

b
y

th
e

M
M

fo
r

m
al

es
in

te
st

ge
n
ot

y
p

e
su

b
se

t
or

eff
ec

t
si

ze
es

ti
m

at
e

ca
lc

u
la

te
d

fr
om

ch
i

ta
b
le

fo
r

m
al

es
on

ly
su

b
se

t
in

F
E

.
29

S
ex

M
v
K

O
st

an
d
ar

d
er

ro
r

N
u
m

er
ic

M
M

S
ta

n
d
ar

d
er

ro
r

of
th

e
”S

ex
M

v
K

O
es

ti
m

at
e”

in
M

M
.

30
S
ex

M
v
K

O
p
-v

al
N

u
m

er
ic

M
M

p
-v

al
u
e

th
at

re
p
re

se
n
ts

th
e

p
ro

b
ab

il
it

y
th

at
m

al
es

gr
ou

p
fr

om
te

st
ge

n
ot

y
p

e
su

b
se

t
co

n
tr

ib
u
ti

on
in

to
M

M
is

N
O

T
re

le
va

n
t.

31
C

la
ss

ifi
ca

ti
on

ta
g

S
tr

in
g

M
M

an
d

F
E

A
se

x
u
al

d
im

or
p
h
is

m
as

se
ss

m
en

t
of

th
e

p
h
en

ot
y
p
ic

ch
an

ge
fr

om
th

e
re

su
lt

s
of

M
M

or
th

e
ov

er
al

l
es

ti
m

a-
ti

on
of

th
e

si
gn

al
s

si
gn

ifi
ca

n
ce

in
F

E
.

32
A

d
d
it

io
n
al

in
fo

rm
at

io
n

S
tr

in
g

M
M

an
d

F
E

A
d
d
it

io
n
al

in
fo

co
n
ce

rn
in

g
d
at

as
et

,
fo

r
in

st
an

ce
,

su
b
se

ts
si

ze
s

fo
r

M
M

.
S
tr

in
g

in
J
S
O

N
fo

rm
at

.

T
ab

le
7:

V
ec

to
r

ou
tp

u
t

d
es

cr
ip

ti
on

.

42



NA

Weight estimate

NA

Weight standard error

NA

Weight p-val

NA

Gp1 genotype

"+/+"

Gp1 Residuals normality test

NA

Gp2 genotype

"Aff3/Aff3"

Gp2 Residuals normality test

NA

Blups test

NA

Rotated residuals normality test

NA

Intercept estimate

NA

Intercept standard error

NA

Interaction included

NA

Interaction p-val

NA

Sex FvKO estimate

"81"

Sex FvKO standard error

NA

Sex FvKO p-val

"1.00779809539594e-05"

Sex MvKO estimate

"70"

Sex MvKO standard error

NA

Sex MvKO p-val

"0.000286667802768362"

Classification tag

NA

Additional information

NA
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4.3 Count Matrices in Vector Format

There is an additional function to support the FE framework: vectorOut-
putMatrices. This function returns values from count matrices in the vector
format. We’ve limited the number of levels for dependent variable to 10. In
the vector, the first three positions represent: dependent variable, genotype
level 1 (reference genotype) and genotype level 2 (test genotype). The next
10 positions are used to define the dependent variable levels. When there
are less than 10 levels, “NA” value is used. The next 20 positions represent
combined count matrix values. Thereafter the vector contains the males only
count matrix values and females only count matrix values. Again “NA” is
used when the values are not present. The positions are labelled with the
group and level.

For the chi squared tables from example described in “Fisher Exact Test
framework” subsection (see ??) results of vectorOutputMatrices function look
like this:

> vectorOutputMatrices(result_cat)

Dependent variable Gp1 Genotype (g1)

"Thoracic.Processes" "+/+"

Gp2 Genotype (g2) Dependent variable level1 (l1)

"Aff3/Aff3" "Abnormal"

Dependent variable level2 (l2) Dependent variable level3 (l3)

"Normal" NA

Dependent variable level4 (l4) Dependent variable level5 (l5)

NA NA

Dependent variable level6 (l6) Dependent variable level7 (l7)

NA NA

Dependent variable level18 (l8) Dependent variable level9

NA NA

Dependent variable level10 (l10) Value g1_l1

NA "144"

Value g2_l1 Value g1_l2

"12" "755"

Value g2_l2 Value g1_l3

"1" NA

Value g2_l3 Value g1_l4

NA NA

Value g2_l4 Value g1_l5

NA NA

Value g2_l5 Value g1_l6

NA NA

Value g2_l6 Value g1_l7

NA NA

Value g2_l7 Value g1_l8

NA NA
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Value g2_l8 Value g1_l9

NA NA

Value g2_l9 Value g1_l10

NA NA

Value g2_l10 Male Value g1_l1

NA "61"

Male Value g2_l1 Male Value g1_l2

"5" "392"

Male Value g2_l2 Male Value g1_l3

"1" NA

Male Value g2_l3 Male Value g1_l4

NA NA

Male Value g2_l4 Male Value g1_l5

NA NA

Male Value g2_l5 Male Value g1_l6

NA NA

Male Value g2_l6 Male Value g1_l7

NA NA

Male Value g2_l7 Male Value g1_l8

NA NA

Male Value g2_l8 Male Value g1_l9

NA NA

Male Value g2_l9 Male Value g1_l10

NA NA

Male Value g2_l10 Female Value g1_l1

NA "83"

Female Value g2_l1 Female Value g1_l2

"7" "363"

Female Value g2_l2 Female Value g1_l3

"0" NA

Female Value g2_l3 Female Value g1_l4

NA NA

Female Value g2_l4 Female Value g1_l5

NA NA

Female Value g2_l5 Female Value g1_l6

NA NA

Female Value g2_l6 Female Value g1_l7

NA NA

Female Value g2_l7 Female Value g1_l8

NA NA

Female Value g2_l8 Female Value g1_l9

NA NA

Female Value g2_l9 Female Value g1_l10

NA NA

Female Value g2_l10

NA
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5 Graphics

For graphical output of the analysis, multiple graphical functions have been
generated and these can be called by a user individually or alternatively,
generateGraphs generates all relevant graphs for an analysis and stores the
graphs in the defined directory.

> generateGraphs(phenTestResult=result,dir="./graphs",graphingName="Lean Mass",type="windows")

> generateGraphs(phenTestResult=result_cat,dir="./graphs_categorical",type="windows")

5.1 Graphics for Categorical Data

There is only one graphical output for FE framework: categorical bar plots.
This graph allows a visual representation of the count data, comparing ob-
served proportions between reference and test genotypes.

> categoricalBarplot(result_cat)

The example of bar plot is shown in Figure ??. This graph allows a visual
representation of the genotype effect for the variable of interest.

Figure 10: The PhenStat package’s graphical output: categorical bar plot.
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5.2 Graphics for Continuous Data

There are many graphic functions for the MM framework results. They can
be divided into two types: dataset based graphs and results based graphs.
There are three functions in the dataset based graphs category:

• boxplotSexGenotype creates a box plot split by sex and genotype.

• boxplotSexGenotypeBatch creates a box plot split by sex, genotype and
batch if batch data present in the dataset. Please note the batches
are not ordered with time but allow assessment of how the treatment
groups lie relative to the normal control variation.

• scatterplotGenotypeWeight creates a scatter plot body weight versus
dependent variable. Both a regression line and a loess line (locally
weighted line) is fitted for each genotype.

> boxplotSexGenotype(test,depVariable="Lean.Mass",graphingName="Lean Mass")

> boxplotSexGenotypeBatch(test,depVariable="Lean.Mass",graphingName="Lean Mass")

> scatterplotGenotypeWeight(test,depVariable="Bone.Mineral.Content",graphingName="BMC")

An example of box plot split by sex and genotype is shown in Figure ??.
Outliers are shown as independent data points beyond the fences (“whiskers”)
of the boxplot. An outlier is defined as a data point that is 1.5 times the
interquartile range above the upper quartile and bellow the lower quartile.

The example of box plot split by sex, genotype and batch is shown in Figure
??. This allows a visualisation of variation of dependent variable with time.
The MM framework assumes this variation is random and conforms the nor-
mal distribution. Then the genotype distribution can be compared relative
to natural variation.

The example of scatter plot of body weight versus dependent variable is
shown in Figure ??. When weight is included in the model MM framework,
it assumes a linear relationship between dependent variable and body weight.
This graph allows an assessment of this assumption.

There are five functions in the results based graphs category:

• qqplotGenotype creates a Q-Q plot of residuals for each genotype.

• qqplotRandomEffects creates a Q-Q plot of blups (best linear unbiased
predictions).

• qqplotRotatedResiduals creates a Q-Q plot of “rotated” residuals.
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Figure 11: The PhenStat package’s graphical output: box plot split by sex
and genotype.

Figure 12: The PhenStat package’s graphical output: box plot split by sex,
genotype and batch.
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Figure 13: The PhenStat package’s graphical output: scatter plot of body
weight versus dependent variable.

• plotResidualPredicted creates predicted versus residual values plots split
by genotype.

• boxplotResidualBatch creates a box plot with residue versus batch split
by genotype.

> qqplotGenotype(result)

> qqplotRandomEffects(result)

> qqplotRotatedResiduals(result)

> plotResidualPredicted(result)

> boxplotResidualBatch(result)

The example of Q-Q plot of residuals for each genotype is shown in Figure ??.
The MM framework assumes residuals are normally distributed. Residuals
are the differences between the real values observed for a dependent variable
and the fitted values from the model. A Q-Q plot assesses this assumption
(residuals will be randomly arranged around the line if normally distributed).

The example of Q-Q plot of BLUPs (best linear unbiased predictions) is
shown in Figure ??. The MM framework assumes the BLUPs are normally
distributed. This graph assesses this assumption by plotting BLUPs and
the ideal normal line (large deviations from the line can be an indicator of
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Figure 14: The PhenStat package’s graphical output: Q-Q plot of residuals
for each genotype.

problems with the model fit). BLUPs are best linear unbiased predictions
and are used for the estimation of batch effects. See tutorial BLUPs for more
details.

Another method to assess the model fit is to consider the normality of the
“rotated” and “unrotated” residuals. The example of Q-Q plot of “rotated”
residuals is shown in Figure ??. See section ?? for the details about “rotated”
residuals.

The example of residual-by-predicted plot is shown in Figure ??. Residuals,
differences between fitted and real values, are plotted against the predicted
(fitted) values of dependent variable. A residual-by-predicted plot can be
used to diagnose nonlinearity or nonconstant error variance. It is also can be
used to find outliers.

Here are the characteristics of a residual-by-predicted plot when model fitness
is close to the ideal and what they suggest about the appropriateness of the
model:

• The residuals are arranged randomly around the 0 line. This suggests
that the assumption that the relationship is linear is reasonable.
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Figure 15: The PhenStat package’s graphical output: Q-Q plot of BLUPs
(best linear unbiased predictions).

Figure 16: The PhenStat package’s graphical output: Q-Q plot of “rotated”
residuals.
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• The residuals roughly form a ”horizontal band” around the 0 line. This
suggests that the variances of the error terms are equal.

• No one residual outstands from the basic random pattern of residuals.
This suggests that there are no outliers. See Regression Methods for
more details.

Figure 17: The PhenStat package’s graphical output: residual-by-predicted
plot split by genotype.

The example of box plot with residue versus batch split by genotype is shown
in Figure ??. This allows assessment that the residual behaviour for all
batches is within natural deviation and the model is fitting the data well.

6 Case Studies

6.1 PhenStat Usage Example Continuous Data

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) is Dual-energy X-ray absorptiometry data
obtained for a study on gene knockout mice carrying the Akt2<tm1Wcs>
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Figure 18: The PhenStat package’s graphical output: box plot with residual
versus batch split by genotype.

targeted allele which were created by blastocyst injection of targeted ES
cells, and bred on the 129S5SvEvBrd genetic background. Data was collected
doing a standardized high throughput phenotyping pipeline following a multi-
batch workflow, where regular control animals are collected and knockout
animals of the correct age are issued to the pipeline as they arise.

Genotype Sex Number Animals Number Batches

Akt2 /Akt2
Female 12 3
Male 14 3

+/+
Female 574 96
Male 572 97

Table 8: Number of animals and number of batches in the Akt2 dataset

6.1.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, and then the result object. We can then explore the
data and fitted results using the visualisation and output functions.

> DEXAdata=read.csv("WTSI_AKt2_data.csv")
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> test <- PhenList(dataset=DEXAdata,testGenotype="Akt2/Akt2",

refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male" )

> result <- testDataset(test,depVariable="Lean.Mass",method="MM",equation="withoutWeight")

6.1.2 Exploring and understanding the output

The first two lines of the summaryOutput confirm the statistical framework
used and the dependent variable studied. The next section of the output
clarifies the final fitted model details. As the MM framework is an optimi-
sation process exploring the data to fit the best model to the data, the final
fitted model details will vary. We can see that batch variation, the varia-
tion in readings between different assay dates, were found to be statistical
significant and hence a mixed model will have been fitted where batch is
treated as a random effect. If it was not significant, then the model would
have reverted to a simpler linear model. The next line of output, “was vari-
ance equal?”, indicating whether the model assumes equal variance between
genotype groups or unequal. In this case, the variance was not found to be
equal and therefore the final model estimated the variance for each group
separately.

The next stage of the output, indicates whether there was evidence of sexual
dimorphism (i.e. the genotype effect was found to be dependent on sexes).
In this case, the statistical test of sexual dimorphism was non-significant (p-
value = 0.899) hence the final model assessed a genotype effect rather than
the genotypes for each sex separately. The following line indicate which main
effects were included in the final model; for this variable and dataset we can
see that sex was significant in explaining variation in the data and hence is
included in the final model.

The final stage of the output gives information on the final model details.
The “Genotype effect” reports the statistical significance for the genotype
effect and is assessed by comparing a treatment model (final fitted model)
with a null model where a null model has no genotype effects in the model
but all other significant main effects. In this example the null model would
thus be Lean.Mass ∼ Sex. Looking at the output the “Genotype effect” is
highly statistical significant as a 0 value is reported. We can then look at
the model fitting details in the final output of the function by examining
the table to see how the main effects contributed to the variation in the
dependent variables.
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> summaryOutput(result)

Test for dependent variable: Lean.Mass

Method: Mixed Model framework

Was batch significant? TRUE

Was variance equal? FALSE

Was there evidence of sexual dimorphism? no (p-value 0.906)

Final fitted model: Lean.Mass ~ Genotype + Sex

Model output:

Genotype effect: 0

Classification tag: With phenotype threshold value 0.01 - both sexes equally

Value Std.Error DF t-value p-value

(Intercept) 18.525264 0.1936360 1048 95.670550 0.000000e+00

GenotypeAkt2/Akt2 -3.527111 0.4866433 1048 -7.247836 8.204401e-13

SexMale 4.620361 0.1581236 1048 29.219943 8.940893e-138

A regression model estimates each component of the model, by isolating how
that effect influences the dependent variable (i.e. lean mass) as though all
other parts of the model had been fixed and isolated. From the table of
output, we can see that the intercept (the expected reading for lean mass
for female reference genotype (aka female wild type animals) is 18.5. Then
we can see the effect of the genotype is -3.5 in that knockout animals are
predicted to have 3.5 grams less lean mass relative to the control animals.
Finally we can see that being a male animals leads to an increase of 4.6 grams.
As there was no evidence for sexual dimorphism, and thus the genotype
effect was estimated independently of sex, then a classification tag “both
sexes equally” has been assigned. These estimates are in agreement with the
visualisation of the data (see section ??).

6.1.3 Assessment of raw data and distribution characteristics

To assess model fit, graphical tools are ideal. They focus on two areas:

1. Assessment of raw data and distribution characteristics

2. Assessment of model fit

The function, boxplotSexGenotype, allows the genotype effect to be visualised
for each sex group. For the Akt2 example, we can suggest that there looks
to be a significant genotype effect that is seen in both sexes.

> boxplotSexGenotype(result, "Lean.Mass", "Lean Mass (g)")
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Figure 19: boxplotSexGenotype function for Akt2 example.

A second function, boxplotSexGenotypeBatch, allows the comparison between
genotype as a function of batch and sex. This plot allows the user to visualise
the batch variation and assess how the treatment measures look relative to
the batch variation. It is important to note that as dates can be entered in
many forms, the batches are not ordered with time. For the Akt2 lean mass
example, we can see that there is significant batch variation, which explains
why a mixed model was fitted.

> boxplotSexGenotypeBatch(test, "Lean.Mass", "Lean Mass (g)")

Figure 20: boxplotSexGenotypeBatch function for Akt2 example.
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6.1.4 Assessment of model fit

Five functions are available and they focus on looking at residual behaviour.
A residual, is the difference between the estimated dependent variable from
the final model estimates and the actual measured dependent variable re-
sponse. A model is a good fit, when the residuals are normally distributed
and there is no systematic pattern in the distribution of the residuals relative
to the dependent variable.

The vectorOutput function includes statistical tests for normality on the
residuals for the wild type, residuals for the knockout, the blups and “ro-
tated” residuals (see section ??). These normality tests are provide to assist
in the building automated tools for assessing model fit, however when there
is a lot of data (e.g. in a dataset where the wild type arises from a high
throughput program with a running baseline), the statistical test can be
overall sensitive to departures from normality and when the number of data
points is low (e.g. in many knockout groups), the test can lack ability to
detect deviations from normality.

• qqplotGenotype

This function assesses the normality of the residuals are assessed for
each genotype through plotting a normal Q-Q plot. Q-Q plots are a
means of comparing two distributions. To test normality, we plot the
residuals against a normal distribution and see if they match. If the
two distributions are similar the points on a QQ plot will fall along
the y=x line (unity). Thus we are looking for a random distribution of
points along the lines.

Looking at the Akt2 lean mass example, the residuals on the homozy-
gous knockout group are near perfect showing the model is fitting this
data well. The residuals on the WT group are deviating in a way (sys-
tematic below at one end and systematic above at the other) which
indicates that we have long tails to our distribution. This is not con-
cerning as we have a very large control dataset and we do have outliers
in the data.

> qqplotGenotype(result)
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Figure 21: qqplotGenotype function for Akt2 example.

• boxplotResidualBatch

This function allows visualisation to assist the user to assess whether
the deviation in the residual is consistent across all the batches and
similar in size between the wild type and knockout line. For the Akt2
example, we can see that the variation in residual is consistent across
all the batches and similar in size between the knockout and wildtype
group.

A few of the wildtype (control) dataset points have large residuals and it
would be worth looking at these data points further to see why these are
outliers. They do not suggest the model should be discarded because
as a proportion of the dataset they are few and scattered through the
dataset.

> boxplotResidualBatch(result)
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Figure 22: boxplotResidualBatch function for Akt2 example.

• plotResidualPredicted

This function plots the residuals against the predicted readings for both
genotypes. The predicted readings are the values the model would
estimate for the dependent variable. As a user, you are looking to
see that the model is fitting the data well over the entire data range.
Looking at the Akt2 data, we can see that there spread of the residuals
is fairly consistent, however there are some data points that are not
being fit well by the model, the good news is that they are in the
control set but they should be considered further to see if a reason for
their poor fit can be ascertained.

> plotResidualPredicted(result)
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Figure 23: plotResidualPredicted function for Akt2 example.

• qqplotRandomEffects

This function is assessing the assumption that the batch effects are
normally distributed. The estimates of the random effects, aka the
estimates of the batch effects in this scenario, are called best linear
unbiased prediction BLUPs. Here a normal Q-Q plot is used to plot
the estimated BLUPs against a normal distribution. So looking at the
Akt2 lean mass example, the majority of the data points are distrbuted
along the line. There is some systematic deviation at the tails but it is
a small percentage of the points and as it is above and below the line it
indicates long tails (ie outliers) and so we can conclude the distribution
is not too far from the ideal and the model is a good representation of
the data.

> qqplotRandomEffects(result)
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Figure 24: qqplotRandomEffects function for Akt2 example.

• qqplotRotatedResiduals

This function, allows the user to consider the normality of the “rotated”
and “unrotated” residuals and have been recommended to assess model
fit success with mixed models (?). See section ?? for more details. So
looking at the Akt2 lean mass example, the majority of the data points
are distributed along the line. There is some systematic deviation at
the tails but it is a small percentage of the points and as it is above
and below the line it indicates long tails (i.e. outliers) and so we can
conclude the distribution is not too far from the ideal and the model
is a good representation of the data.

> qqplotRotatedResiduals(result)
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Figure 25: qqplotRotatedResiduals function for Akt2 example.

6.1.5 Including weight as a covariate in the model fitting pro-
cess

Weight is included in the initial model via the testDataset function equa-
tion argument being set to either “withWeight” or “withoutWeight”. When
weight is included as a covariate, the model is assuming that the depen-
dent variable (e.g. lean mass) has a linear relationship with body weight.
If weight is not found to be statistical significant in explaining the variation
in the dependent variable, then weight as a covariate will drop out of the
final model and the equation will automatically revert to an equation type
“withoutWeight”.

There are two advantages to including weight:

1. Increase in sensitivity. If differences in animal weight lead to greater
variability in the dependent variable, then by adding weight and ac-
counting for this variability then the statistical model will be more
sensitive to a genotype effect.

2. Adjusting for weight differences between the knockout and
control group. When there is a weight difference between the knock-
out and wild type animals, the genotype effect is confounded by the
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weight effect in that there is a difference in the dependent variable but
you cannot assess whether it is due to the differences in body weight of
the knockout and control animals or genotype differences between the
knockout and control animals. When weight is included in the equa-
tion, the genotype effect is then testing for a genotype difference after
adjusting for the weight difference.

We have found that the majority of continuous phenotypic variables moni-
tored in the WTSI Mouse Genetics Project (MGP) have a relationship with
body weight. Looking at the Akt2 dataset we can see that there is a difference
in body weight between the wild type and knockout group and thus body
weight can be a confounding factor to isolating the genotype effect.

> boxplotSexGenotype(test, "Weight", "Body Weight (g)")

Figure 26: boxplotSexGenotype function for Akt2 example to show the body
weight impact.

When body weight is included, the inclusion can be seen in the final fitted
model as weight is listed as a covariate and then in the final model output
table, where the influence of weight on the fitted model is shown. With
weight included the genotype effect is estimating the impact of genotype
after adjusting for weight differences in the animals.

Looking at the summaryOutput for the Akt2 example, the table shows that
for each gram of body weight the lean mass increased by 0.32g. When weight
is included in the equation it changes the definition of the intercept from the
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lean mass value of a wild type female animal to the lean mass value of a
wild type female animal of zero body weight. This happens as the model
is estimating each of these terms influences in isolation of the other terms.
In contrast to the earlier fitted results (section ??), when weight is included
in the model, the classification tag identifies the change as “no significant
change” as the global genotype test is now not significant with a p-value of
0.64. This means the statistically difference observed with the fitted model
“withoutWeight” was entirely due to a body weight differences between the
knockout and control animals. So whilst there is a fundamental differences
in lean mass between the knockout and control this is due to the knockout
animals being smaller than the control animals.

> summaryOutput(result)

Test for dependent variable: Lean.Mass

Method: Mixed Model framework

Was batch significant? TRUE

Was variance equal? FALSE

Was there evidence of sexual dimorphism? no (p-value 0.105)

Final fitted model: Lean.Mass ~ Genotype + Sex + Weight

Model output:

Genotype effect: 0.639989841

Classification tag: With phenotype threshold value 0.01 - no significant change

Value Std.Error DF t-value p-value

(Intercept) 7.6201046 0.52150631 1047 14.6117207 3.827390e-44

GenotypeAkt2/Akt2 -0.1924952 0.41201772 1047 -0.4672012 6.404531e-01

SexMale 2.1550868 0.17386173 1047 12.3954067 5.056608e-33

Weight 0.3541522 0.01623164 1047 21.8186332 2.718321e-87

6.1.6 Additional model diagnostics when weight is included

In addition to the diagnostic discussed in previous section, when weight is
included in the model, it is important to consider whether the linear relation-
ship between body weight and the dependent variable is a valid assumption.
This can be assessed with the scatterplotGenotypeWeight function. In this
plot, for each genotype a regression line is fitted to assess the relationship
between the dependent variable and body weight. Then a locally weight line
(loess line) is plotted. The loess line allows assessment that the regression
line fits all the data well. Note the loess line can be distorted by a few data
points so if it deviates strongly but for only a few data points, this is not
concerning. This graph is used to assess whether a linear relationship exists
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and whether it is the same for both genotypes.

In the Akt2 example, it can be clearly seen that a common linear relationship
exists between lean mass and body weight, such that as the weight increases
so does the lean mass. It can also be seen that the knockout animals have
a lower body weight and subsequently lower lean mass but the drop in lean
mass is entirely in accordance with the drop in body weight.

> scatterplotGenotypeWeight(test, depVariable="Lean.Mass")

Figure 27: scatterplotGenotypeWeight function for Akt2 example.

6.2 PhenStat Usage Example Categorical Data

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) of high resolution X-ray data obtained from
a study on gene knockout mice carrying the Aff3tm1a(EUCOMM)Wtsi tar-
geted allele which were created by blastocyst injection of targeted ES cells,
and bred on the B6N genetic background. Data was collected on a standard-
ized high throughput phenotyping pipeline following a multi-batch workflow,
where regular control animals are collected and knockout animals of the cor-
rect age are then issued to the pipeline as they arise. At WTSI, batch to
batch variation has not been found to be significant for these rare event cat-
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egorical variables. Consequently, we ignore batch and combine data for the
same genetic background when collected with the same protocol and housing
and husbandry conditions. This increases the sensitivity of the analysis as
we have more accuracy on the estimate of the prevalence of the condition in
the wild type population.

Genotype Sex Number Animals Number Batches

Aff3 /Aff3
Female 7 4
Male 6 4

Wild type
Female 446 70
Male 451 70

Table 9: Number of animals and number of batches in the Aff3 dataset

6.2.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, and then the result object. We can then explore the
data and fitted results using the visualisation and output functions.

> aff3data=read.csv("categorical_example 1_aff3_Xray.csv")

> test <- PhenList(dataset=aff3data,testGenotype="Aff3/Aff3",

refGenotype="+/+", dataset.colname.batch="Assay.Date")

> result <- testDataset(test, depVariable="Thoracic.Processes", method="FE")

6.2.2 Visualisation of data

The function categoricalBarplot has been provided to visualise the categorical
data as summary percentage data. It reports the percentage of each clas-
sification observed for up to three datasets: all data, male only and female
only. It is important to note that percentage accuracy is very dependent on
the number of readings so it is important to consider the dataset size when
interpreting these graphs. Therefore tables showing both the percentage and
count values are included in the summaryOutput.

> categoricalBarplot(result)
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Figure 28: categoricalBarplot function for Aff3 example.

6.2.3 Understanding the summaryOutput

The first two lines of the summaryOutput confirm the statistical framework
used and the dependent variable studied. The next section of the output
reports the summary of statistical assessment. Two measures are provided
for each dataset considered. First a test of statistical significance assessed
using a Fisher Exact Test and then a measure of biological significance, the
maximum effect size. The final section of the output provides tables showing
the counts and percentage calculated for each group and possible level.

The following is reported for dependent variable thoracic processes for the
Aff3 dataset and we can see that for all datasets, there is a statistically
significant change with a large effect size.

The summaryOutput function shows the model fitted and the model output
for the analysis of the thoracic processes for the Aff3 dataset. The example
is showing the summary tables provided for the composite (male and female
data) for the thoracic processes for the Aff3 dataset.

> summaryOutput(result)

...

Model output:

All data p-val: 4.35745946092922e-09

All data effect size: 76%

Males only p-val: 0.00025633944344021

Males only effect size: 70%
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Females only p-val: 1.00779809539594e-05

Females only effect size: 81%

Matrix ’all’:

+/+ Aff3/Aff3

Abnormal 142 12

Normal 753 1

Percentage matrix ’all’ statistics:

+/+ Aff3/Aff3 ES change

Abnormal 16 92 76

Normal 84 8 76

Matrix ’all’ statistics:

X^2 df P(> X^2)

Likelihood Ratio 36.678 1 1.3931e-09

Pearson 53.164 1 3.0675e-13

Phi-Coefficient : 0.242

Contingency Coeff.: 0.235

Cramer’s V : 0.242

...

6.2.4 Understanding the maximum effect size reported

The maximum effect size is the maximum percentage change seen for an
observation type. Below is a table showing an artificial example where the
majority of the wild type are normal but the abnormality is spread across
multiple levels in the knockout. For each trait level (i.e. the observed phe-
notype), the change in percentage effect size is seen by subtracting the per-
centage observed in the knockout from the wild type. Then across all the
observed levels, the maximum percentage change is selected after ignoring
the direction of the change. Thus in the example below, the maximum effect
size would be 86.5% which indicates that there has been 86.5% change in
how often a level is observed.

6.2.5 A dependent variable with little variation

Within the IMPC pipeline, there are a number of dependent variables which
have little variation but are numeric. For example, no of digits, or number of
caudal vertebrae etc. If you try to process these variables through a mixed
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Trait level
wildtype knockout

Effect size calculation Effect size
count % count %

Normal 198 99 1 12.5 99-12.5 86.5
Abnormal left eye 0 0 0 0 0 0
Abnormal right eye 1 0.5 4 50 0.5-50 49.5
Abnormal both eye 1 0.5 3 37.5 0.5-37.5 37

Table 10: Number of animals and number of batches in the Aff3 dataset

model framework the analysis will stop and an error will report that there is
insufficient variability in the data.

For our example dataset, the number of ribs is a dependent variable with
little variation as shown by plotting the data with the categoricalBarplot
function.

Figure 29: categoricalBarplot function for Aff3 example with number of ribs
as dependent variable.

If we try and process this variable through a mixed model framework the
following output is obtained:

> result<-testDataset(test,depVariable="Number.Of.Ribs.Left",method="MM")

Error:

Insufficient variability in the dependent variable ’Number.Of.Ribs.Left’ for MM framework.

Fisher Exact Test can be better way to do the analysis.

Error:

Insufficient variability in the dependent variable ’Number.Of.Ribs.Left’ for genotype/sex

combinations to allow the application of Mixed Model.
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Instead the dependent variable should be treated as a categorical variable
which each numeric output possible treated as a level allowing a statistical
comparison of how the levels are distributed between the knockout and wild-
type groups. Thus for our example the following summary output and count
table is obtained:

> summaryOutput(result)

Test for dependent variable: Number.Of.Ribs.Left

Method: Fisher Exact Test framework

Model output:

All data p-val: 1

All data effect size: 0%

Males only p-val: 1

Males only effect size: 0%

Females only p-val: 1

Females only effect size: 0%

Matrix ’all’:

+/+ Aff3/Aff3

12 1 0

13 893 13

14 1 0

Percentage matrix ’all’ statistics:

+/+ Aff3/Aff3 ES change

12 0 0 0

13 100 100 0

14 0 0 0

6.3 PhenStat Example Using Cluster

If someone would like to analyse all variables in the dataset and has a cluster
available for such kind of job then here is an example of PhenStat package
usage.

First, the function that runs on each cluster’s node and stores the results
in particular directory is created. This function is based on the section
dataset.stat of the PhenList object.

PhenStatCluster<-function(phenList,i){

# reads variable names from dataset.stat table

variable <- as.character(phenList$dataset.stat$Variables[i])

# checks if variable is continuous again by using dataset.stat table
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isContinuous <- phenList$dataset.stat$Continuous[i]

# skip the analysis for Batch and Genotype variables

if (!(variable %in% c("Batch","Genotype"))){

if (isContinuous && !(variable %in% c("Weight")))

# performs MM framework for continuous data

result <- testDataset(phenList, variable, method="MM",outputMessages=FALSE)

else

if (!isContinuous){

# performs FET framework for categorical data

result <- testDataset(phenList, variable, method="FE",outputMessages=FALSE)

}

else

# performs MM framework for weight variable

result <- testDataset(phenList, variable, method="MM",equation="withoutWeight",outputMessages=FALSE)

write(vectorOutput(result),paste("./",variable,".txt",sep="")) # stores the results

}

}

We are planning to analyse every individual variable of the dataset using a
cluster. Each one cluster node has to have sourced function PhenStatCluster
and loaded PhenStat library. PhenList object with dataset to analyse should
also be available for every cluster node.

# cluster preparation

# set the folder

setwd("/yourWorkingDirectory")

# create logs folder in it

dir.create(paste(getwd(), "/logs", sep=""))

# define tasks

tasks <- c(1:length(test$dataset.stat$Variables))

# load snow

# snow creates and manages clusters

library(snow)

# create cluster

cluster = makeCluster(length(tasks), type="...") # type values: MPI, RCLOUD, etc.

# Setup cluster nodes

# set current folder on each node

clusterEvalQ(cluster, setwd("/yourWorkingDirectory"))

# create logs and forward output to the log files

clusterEvalQ(cluster, try({ fn = paste(getwd(), "./", Sys.info()[4], "-", Sys.getpid(), ".log", sep="");

o <- file(fn, open = "w"); sink(o); sink(o, type = "message"); }))

71



# test output is routed to the logs

clusterEvalQ(cluster, message("message - OK"))

clusterEvalQ(cluster, cat("cat - OK"))

# load package and source function for each node

clusterEvalQ(cluster, library(PhenStat))

clusterEvalQ(cluster, source("/pathToTheSource/PhenStatCluster.R"))

# export PhenList object to make it available for every node

clusterExport(cluster, "test")

# finally apply function for each one variable within the dataset

clusterApplyLB(cluster, tasks, function(x){ message("---------- processing ",

test$dataset.stat$Variables[x], " ----------"); try(PhenStatCluster(test,x)); })

# clean up

stopCluster(cluster)

rm(cluster)

clusterCleanup()

The output is avaialble in the specified directory: ”/yourWorkingDirectory”.
For each variable from the dataset the output file with results in vector format
is created.
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