
Package ‘Rsubread’
October 8, 2014

Type Package

Title Rsubread package: high-performance read alignment,quantification and mutation discovery

Version 1.14.2

Author Wei Shi and Yang Liao with contributions from Jenny Zhiyin Dai and Timothy Triche, Jr.

Maintainer Wei Shi <shi@wehi.edu.au>

Description This R package provides powerful and easy-to-use tools for
analyzing next-gen sequencing read data. Functions of this
package include quality assessment of sequence reads, read
alignment, read summarization, exon-
exon junction detection,fusion detection, detection of short and long indels, absolute
expression calling and SNP calling. This package can be used to
anlayze data generated from all major sequencing platforms such
as Illumina GA/HiSeq/MiSeq, Roche GS-FLX, ABI SOLiD and
LifeTech Ion PGM/Proton sequencers. It supports multiple
operating systems incluidng Linux, Mac OS X, FreeBSD and Solaris.

URL http://bioconductor.org/packages/release/bioc/html/Rsubread.html

License GPL-3

LazyLoad yes

biocViews Sequencing, Alignment, SequenceMatch-
ing, RNASeq, ChIPSeq,GeneExpression, GeneRegulation, Genet-
ics, SNP,GeneticVariability, Preprocessing, QualityControl,GenomeAnnotation, Software

R topics documented:
align . 2
atgcContent . 6
buildindex . 7
createAnnotationFile . 8
detectionCall . 9

1

http://bioconductor.org/packages/release/bioc/html/Rsubread.html

2 align

detectionCallAnnotation . 10
exactSNP . 10
featureCounts . 12
findCommonVariants . 18
getInBuiltAnnotation . 19
processExons . 20
propmapped . 21
qualityScores . 22
removeDupReads . 23
RsubreadUsersGuide . 24
sam2bed . 24

Index 26

align Read mapping for genomic DNA-seq and RNA-seq data via seed-and-
vote (Subread and Subjunc)

Description

Subread and Subjunc perform local and global alignments respectively. The seed-and-vote paradigm
enables efficient and accurate alignments to be carried out.

Usage

align(index,readfile1,readfile2=NULL,input_format="gzFASTQ",output_format="BAM",
output_file=paste(readfile1,"subread",output_format,sep="."),nsubreads=10,
TH1=3,TH2=1,maxMismatches=10,nthreads=1,indels=5,phredOffset=33,tieBreakQS=FALSE,
tieBreakHamming=TRUE,unique=TRUE,nBestLocations=1,minFragLength=50,
maxFragLength=600,PE_orientation="fr",nTrim5=0,nTrim3=0,readGroupID=NULL,
readGroup=NULL,color2base=FALSE,DP_GapOpenPenalty=-1,DP_GapExtPenalty=0,
DP_MismatchPenalty=0,DP_MatchScore=2,reportFusions=FALSE)

subjunc(index,readfile1,readfile2=NULL,input_format="gzFASTQ",output_format="BAM",
output_file=paste(readfile1,"subjunc",output_format,sep="."),nsubreads=14,
TH1=1,TH2=1,maxMismatches=10,nthreads=1,indels=5,phredOffset=33,tieBreakQS=FALSE,
tieBreakHamming=TRUE,unique=TRUE,nBestLocations=1,minFragLength=50,
maxFragLength=600,PE_orientation="fr",nTrim5=0,nTrim3=0,readGroupID=NULL,
readGroup=NULL,color2base=FALSE,DNAseq=FALSE,reportAllJunctions=FALSE)

Arguments

index character string giving the basename of index file. Index files should be located
in the current directory.

readfile1 a character vector including names of files that include sequence reads to be
aligned. For paired-end reads, this gives the list of files including first reads
in each library. File format is FASTQ/FASTA by default. See input_format
option for more supported formats.

align 3

readfile2 a character vector giving names of files that include second reads in paired-end
read data. Files included in readfile2 should be in the same order as their mate
files included in readfile1 .NULL by default.

input_format character string specifying format of the read input file(s). gzFASTQ by default
(this includes FASTA format as well). Acceptable formats include FASTQ (in-
cluding FASTA), gzFASTQ (gzipped FASTQ or FASTA), SAM and BAM. The char-
acter string is case insensitive.

output_format character string specifying format of the output file. BAM by default. Acceptable
formats include SAM and BAM.

output_file a character vector specifying names of output files. By default, names of output
files are set as the file names provided in readfile1 added with an suffix string.

nsubreads numeric value giving the number of subreads extracted from each read.

TH1 numeric value giving the consensus threshold for reporting a hit. This is the
threshold for the first reads if paired-end read data are provided.

TH2 numeric value giving the consensus threhold for the second reads in paired-end
data.

maxMismatches numeric value giving the maximum number of mis-matched bases allowed in
the alignment. 10 by default. Mis-matches found in soft-clipped bases are not
counted.

nthreads numeric value giving the number of threads used for mapping. 1 by default.

indels numeric value giving the maximum number of insertions/deletions allowed dur-
ing the mapping. 5 by default.

phredOffset numeric value added to base-calling Phred scores to make quality scores (rep-
resented as ASCII letters). Possible values include 33 and 64. By default, 33 is
used.

tieBreakQS logical indicating if the mapping quality score should be to break the tie when
more than one best location was found for a read. FALSE by default. Note
that the mapping quality score used for tie breaking was calcuated only from
the perfectly matched subreads (16mers) extracted from the read, whereas the
mapping quality scores included in the mapping output for mapped reads were
calcuated from using all the bases in the read. Also note that there may still be
more than one best mapping location found after tie breaking using this option.

tieBreakHamming

logical indicating if the Hamming distance should be used to break the tie when
more than one best mapping location was found for a read. TRUE by default.
The distance between the mapped read and the target region in the reference is
calcuated using all the bases included in the read. Note that there may still be
more than one best mapping location found after tie breaking using this option.

unique logical indicating if uniquely mapped reads should be reported only. TRUE by de-
fault. It is recommended that this option is used together with tieBreakHamming
or tieBreakQS.

nBestLocations numeric value giving the maximal number of equally-best mapping locations
allowed to be reported for the read. 1 by default. The allowed value is between 1
to 16 (inclusive). ‘NH’ tag is used to indicate how many alignments are reported

4 align

for the read and ‘HI’ tag is used for numbering the alignments reported for the
same read, in the output. Note that the unique argument takes precedence over
nBestLocations argument.

minFragLength numeric value giving the minimum fragment length. 50 by default.

maxFragLength numeric value giving the maximum fragment length. 600 by default.

PE_orientation character string giving the orientation of the two reads from the same pair. It
has three possible values including fr, ff and rf. Letter f denotes the forward
strand and letter r the reverse strand. fr by default (ie. the first read in the pair
is on the forward strand and the second read on the reverse strand).

nTrim5 numeric value giving the number of bases trimmed off from 5’ end of each read.
0 by default.

nTrim3 numeric value giving the number of bases trimmed off from 3’ end of each read.
0 by default.

readGroupID a character string giving the read group ID. The specified string is added to the
read group header field and also be added to each read in the mapping output.
NULL by default.

readGroup a character string in the format of tag:value. This string will be added to the
read group (RG) header in the mapping output. NULL by default.

color2base logical. If TRUE, color-space read bases will be converted to base-space bases
in the mapping output. Note that the mapping itself will still be performed at
color-space. FALSE by default.

DP_GapOpenPenalty

a numeric value giving the penalty for opening a gap when using the Smith-
Waterman dynamic programming algorithm to detect insertions and deletions.
The Smith-Waterman algorithm is only applied for those reads which are found
to contain insertions or deletions. -1 by default.

DP_GapExtPenalty

a numeric value giving the penalty for extending the gap, used by the Smith-
Waterman algorithm. 0 by default.

DP_MismatchPenalty

a numeric value giving the penalty for mismatches, used by the Smith-Waterman
algorithm. 0 by default.

DP_MatchScore a numeric value giving the score for matches used by the Smith-Waterman algo-
rithm. 2 by default.

reportFusions logical indicating if genomic fusion events such as chimeras should be reported.
If TRUE, align function will detect and report such events. This option should
only be applied for genomic DNA sequencing data. For RNA-seq data, users
should use subjunc with the reportAllJunctions option for detection of fu-
sions. Discovered fusions will be saved to a file (*.fusions.txt). Detailed map-
ping results for fusion reads will also be saved to the SAM/BAM output file.
Secondary alignments of fusion reads will be saved to the following optional
fields: CC(Chr), CP(Position), CG(CIGAR) and CT(strand). Note that each
fusion read occupies only one row in the SAM/BAM output file.

DNAseq logical indicating if the input read data are genomic DNA sequencing data. If
TRUE, subjunc function will ignore the splicing signals (donor/receptor sites)

align 5

when searching for junctions. Junctions that occur within the same chromo-
some or across different chromosomes (chimerism) will all be reported for DNA
seqence data.

reportAllJunctions

logical. This argument should be used for RNA-seq data. If TRUE, subjunc func-
tion will report those junctions that do not have the required donor/receptor sites
(GT/AG), or cross different chromosomes or are located on different strands
within the same chromosome, in addition to the canonical exon-exon junctions.

Details

The align function implements the Subread aligner (Liao et al., 2013) that uses a new mapping
paradigm called “seed-and-vote". Subread is general-purpose aligner that can be used to align both
genomic DNA-seq reads and RNA-seq reads.

Subjunc is designed for mapping RNA-seq reads. The major difference between Subjunc and
Subread is that Subjunc reports discovered exon-exon junctions and it also performs full align-
ments for every read including exon-spanning reads. Subread uses the largest mappable regions in
the reads to find their mapping locations. The seed-and-vote paradigm has been found to be not only
more accurate than the conventional seed-and-extend (adopted by most aligners) in read mapping,
but it is a lot more efficient (Liao et al., 2013).

Both Subread and Subjunc can be used to align reads generated from major sequencing platforms
including Illumina GA/HiSeq, ABI SOLiD, Roche 454 and Ion Torrent sequencers. Note that to
map color-space reads (e.g. SOLiD reads), a color-space index should be built for the reference
genome (see buildindex for details).

Subread and Subjunc have adjustable memory usage. See buildindex function for more details.

Mapping performance is largely determined by the number of subreads extracted from each read
nsubreads and the consensus threshold TH1 (also TH2 for paired-end read data). Default settings
are recommended for most of the read mapping tasks.

Subjunc requires donor/receptor sites to be present when detecting exon-exon junctions. It can
detect up to four junction locations in each exon-spanning read.

Value

No value is produced but SAM or BAM format files are written to the current working directory.
For Subjunc, BED files including discovered exon-exon junctions are also written to the current
working directory.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. The Subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013.

6 atgcContent

Examples

Build an index for the artificial sequence included in file reference.fa.
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

align a sample read dataset (reads.txt) to the sample reference
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
align(index="./reference_index",readfile1=reads,output_file="./Rsubread_alignment.BAM")

atgcContent Calculate percentages of nucletodies A, T, G and C in a sequencing
read datafile

Description

Calculate percentages of nucletodies A, T, G and C

Usage

atgcContent(filename, basewise=FALSE)

Arguments

filename character string giving the name of input FASTQ/FASTA file

basewise logical. If TRUE, nucleotide percentages will be calculated for each base position
in the read across all the reads. By default, percentages are calculated for the
entire dataset.

Details

Sequencing reads could contain letter "N" besides "A", "T", "G" and "C". Percentage of "N" in the
read dataset is calcuated as well.

The basewise calculation is useful for examining the GC bias towards the base position in the read.
By default, the percentages of nucleotides in the entire dataset will be reported.

Value

A named vector containing percentages for each nucleotide type if basewise is FALSE. Otherwise,
a data matrix containing nucleotide percentages for each base position of the reads.

Author(s)

Zhiyin Dai and Wei Shi

buildindex 7

buildindex Build index for a reference genome

Description

An index needs to be built before read mapping can be performed. This function creates a hash
table for the reference genome, which can then be used by Subread and Subjunc aligners for read
alignment.

Usage

buildindex(basename,reference,gappedIndex=TRUE,indexSplit=TRUE,memory=8000,
TH_subread=24,colorspace=FALSE)

Arguments

basename character string giving the basename of created index files.
reference charater string giving the name of the file containing all the refernece sequences.
gappedIndex logical. If FALSE, 16mers (subreads) will be extracted from every chromosomal

location of a reference genome and then they will be used to build a hash table
index. By default(TRUE), subreads are extracted in every three bases from the
genome.

indexSplit logical. If TRUE, the built index is allowed to be splitted into multiple segments.
The number of such segments is determined by memory value, genome size and
permitting of gaps between subreads(gappedIndex). If indexSplit is set to
FALSE, a single-segment index (no splitting) will be generated regardless of what
value is chosen for memory.

memory numeric value specifying the amount of memory to be requested in megabytes.
8000 MB by default.

TH_subread numeric value specifying the threshold for removing highly repetitive subreads
(16 mers). 24 by default. Subreads will be excluded from the index if they occur
more than threshold number of times in the genome.

colorspace logical. If TRUE, a color space index will be built. Otherwise, a base space index
will be built.

Details

This function generates a hash table (an index) for a reference genome, in which keys are subreads
(16mers) and values are their chromosomal locations in the reference genome. By default, sub-
reads will be extracted in every three bases from a reference genome. However, if gappedIndex
is set to FALSE, then subreads will be extracted from every chromosomal location of genome for
index building. The built index can then be used by Subread (align) and subjunc aligners to map
reads(Liao et al. 2013).

Highly repetitive subreads (or uninformative subreads) are excluded from the hash table so as to re-
duce mapping ambiguity. TH_subread specifies the maximal number of times a subread is allowed
to occur in the reference genome to be included in hash table.

8 createAnnotationFile

The built index might be splitted into multiple segments if its size is greater than memory value. The
number of such segments is dependent on memory value, size of reference genome and whether gaps
are allowed between subreads extracted from genome. Only one segment is loaded into memory at
any time when read alignment is being carried out. The larger the memory value, the faster the read
mapping will be. If indexSplit is set to FALSE, the index will not be splitted and this will enable
maximum mapping speed to be achieved.

The index needs to be built only once and it can then be re-used in the subsequent alignments.

Value

No value is produced but index files are written to the current working directory.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. The Subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013.

Examples

Build an index for the artifical sequence included in file reference.fa
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

createAnnotationFile Create an annotation file from a GRanges object, suitable for feature-
Counts()

Description

Any of rtracklayer::import.bed(’samplesubjunc.bed’, asRangedData=FALSE), unlist(spliceGraph(TxDb)),
transcripts(TxDb), exons(TxDb), or features(FDB) will produce a GRanges object containing us-
able features for read counting.

This function converts a suitably streamlined GRanges object into annotations which can then be
used by featureCounts() to quickly count aligned reads.

The GRanges object must contain an elementMetadata column named ’id’.

Usage

createAnnotationFile(GR)
write.Rsubread(GR)

detectionCall 9

Arguments

GR The GRanges object to convert to an Rsubread annotation file

Value

A data frame with five columns named GeneID, Chr, Start, End and Strand.

Author(s)

Tim Triche, Jr. and Wei Shi

Examples

Not run:
library(TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts)
hg19LincRNAs <- transcripts(TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts)
names(values(hg19LincRNAs)) <- gsub(tx_id,id,names(values(hg19LincRNAs)))
annot_for_featureCounts <- createAnnotationFile(hg19LincRNAs)

End(Not run)

detectionCall Determine detection p values for each gene in an RNA-seq dataset

Description

Use GC content adjusted background read counts to determine the detection p values for each gene

Usage

detectionCall(dataset, species="hg", plot=FALSE)

Arguments

dataset a character string giving the filename of a SAM format file, which is the output
of read alignment.

species a character string specifing the species. Options are hg and mm.

plot logical, indicating whether a density plot of detection p values will be generated.

Value

A data frame which includes detection p values and annotation information for each genes.

Author(s)

Zhiyin Dai and Wei Shi

10 exactSNP

detectionCallAnnotation

Generate annotation data used for calculating detection p values

Description

This is for internal use only.

Usage

detectionCallAnnotation(species="hg", binsize=2000)

Arguments

species character string specifying the species to analyase

binsize binsize of integenic region

Value

Two files containing annotation information for exons regions and integenic regions, respectively.

Author(s)

Zhiyin Dai and Wei Shi

exactSNP exactSNP - an accurate and efficient SNP caller

Description

Measure background noises and perform Fisher’s Exact tests to detect SNPs.

Usage

exactSNP(readFile,isBAM=FALSE,refGenomeFile,SNPAnnotationFile=NULL,
outputFile=paste(readFile,".exactSNP.VCF",sep=""),qvalueCutoff=12,minAllelicFraction=0,
minAllelicBases=1,minReads=1,maxReads=3000,minBaseQuality=13,nTrimmedBases=3,nthreads=1)

exactSNP 11

Arguments

readFile a character string giving the name of a file including read mapping results. This
function takes as input a SAM file by default. If a BAM file is provided, the
isBAM argument should be set to TRUE.

isBAM logical indicating if the file provided via readFile is a BAM file. FALSE by
default.

refGenomeFile a character string giving the name of a file that includes reference sequences
(FASTA format).

SNPAnnotationFile

a character string giving the name of a VCF-format file that includes annotated
SNPs. Such annotation files can be downloaded from public databases such
as the dbSNP database. Incorporating known SNPs into SNP calling has been
found to be helpful. However note that the annotated SNPs may or may not be
called for the sample being analyzed.

outputFile a character string giving the name of the output file to be generated by this
function. The output file includes all the reported SNPs (in VCF format). It
includes discovered indels as well.

qvalueCutoff a numeric value giving the q-value cutoff for SNP calling at sequencing depth
of 50X. 12 by default. The q-value is calcuated as -log10(p), where p is the
p-value yielded from the Fisher’s Exact test. Note that this function automati-
cally adjusts the q-value cutoff for each chromosomal location according to its
sequencing depth, based on this cutoff.

minAllelicFraction

a numeric value giving the minimum fraction of allelic bases out of all read
bases included at a chromosomal location required for SNP calling. Its value
must be within 0 and 1. 0 by default.

minAllelicBases

a numeric value giving the minimum number of allelic (mis-matched) bases a
SNP must have at a chromosomal location. 1 by default.

minReads a numeric value giving the minimum number of mapped reads a SNP-containing
location must have (ie. the minimum coverage). 1 by default.

maxReads Specify the maximum number of mapped reads a SNP-containing location can
have. 3000 by default. Any location having more than this threshold number of
reads will not be considered for SNP calling. This option is useful for removing
PCR artefacts.

minBaseQuality a numeric value giving the minimum base quality score (Phred score) read bases
should satisfy before being used for SNP calling. 13 by default(corresponding
to base calling p value of 0.05). Read bases with quality scores less than 13 will
be excluded from analysis.

nTrimmedBases a numeric value giving the number of bases trimmed off from each end of the
read. 3 by default.

nthreads a numeric value giving the number of threads/CPUs used. 1 by default.

12 featureCounts

Details

This function takes as input a SAM/BAM format file, measures local background noise for each
chromosomal location and then performs Fisher’s exact tests to find statistically significant SNPs .

This function implements a novel algorithm for discovering SNPs. This algorithm is comparable
with or better than existing SNP callers, but it is fast more efficient. It can be used to call SNPs for
individual samples (ie. no control samples are required). Detail of the algorithm is described in a
manuscript which is currently under preparation.

Value

No value is produced but but a VCF format file is written to the current working directory. This
file contains detailed information for discovered SNPs including chromosomal locations, reference
bases, alternative bases, read coverages, allele frequencies and p values.

Author(s)

Yang Liao and Wei Shi

featureCounts featureCounts: a general-purpose read summarization function

Description

This function assigns mapped sequencing reads to genomic features

Usage

featureCounts(files,annot.inbuilt="mm9",annot.ext=NULL,isGTFAnnotationFile=FALSE,
GTF.featureType="exon",GTF.attrType="gene_id",useMetaFeatures=TRUE,
allowMultiOverlap=FALSE,isPairedEnd=FALSE,requireBothEndsMapped=FALSE,
checkFragLength=FALSE,minFragLength=50,maxFragLength=600,
nthreads=1,strandSpecific=0,minMQS=0,
readExtension5=0,readExtension3=0,read2pos=NULL,
minReadOverlap=1,countSplitAlignmentsOnly=FALSE,
countMultiMappingReads=FALSE,countPrimaryAlignmentsOnly=FALSE,
countChimericFragments=TRUE,ignoreDup=FALSE,chrAliases=NULL,reportReads=FALSE)

Arguments

files a character vector giving names of input files containing read mapping results.
The files can be in either SAM format or BAM format. The file format is auto-
matically detected by the function.

annot.inbuilt a character string specifying an in-built annotation used for read summarization.
It has three possible values including mm9, mm10 and hg19, corresponding to
the NCBI RefSeq annotations for genomes ‘mm9’, ‘mm10’ and ‘hg19’, respec-
tively. mm9 by default. The in-built annotation has a SAF format (see below).

featureCounts 13

annot.ext A character string giving name of a user-provided annotation file or a data frame
including user-provided annotation data. If the annotation is in GTF format, it
can only be provided as a file. If it is in SAF format, it can be provided as a
file or a data frame. See below for more details about SAF format annotation.
annot.ext will override annot.inbuilt if they are both provided.

isGTFAnnotationFile

logical indicating whether the annotation provided via the annot.ext argument
is in GTF format or not. FALSE by default. This option is only applicable when
annot.ext is not NULL.

GTF.featureType

a character string giving the feature type used to select rows in the GTF annota-
tion which will be used for read summarization. exon by default. This argument
is only applicable when isGTFAnnotationFile is TRUE.

GTF.attrType a character string giving the attribute type in the GTF annotation which will be
used to group features (eg. exons) into meta-features (eg. genes). gene_id by
default. This argument is only applicable when isGTFAnnotationFile is TRUE.

useMetaFeatures

logical indicating whether the read summarization should be performed at the
feature level (eg. exons) or meta-feature level (eg genes). If TRUE, features in
the annotation (each row is a feature) will be grouped into meta-features using
their values in the “GeneID" column in the SAF-format annotation file or using
the “gene_id" attribute in the GTF-format annotation file, and reads will assiged
to the meta-features instead of the features. See below for more details.

allowMultiOverlap

logical indicating if a read is allowed to be assigned to more than one feature
(or meta-feature) if it is found to overlap with more than one feature (or meta-
feature). FALSE by default.

isPairedEnd logical indicating if paired-end reads are used. If TRUE, fragments (templates or
read pairs) will be counted instead of individual reads. FALSE by default.

requireBothEndsMapped

logical indicating if both ends from the same fragment are required to be suc-
cessfully aligned before the fragment can be assigned to a feature or meta-
feature. This parameter is only appliable when isPairedEnd is TRUE.

checkFragLength

logical indicating if the two ends from the same fragment are required to satisify
the fragment length criteria before the fragment can be assigned to a feature or
meta-feature. This parameter is only appliable when isPairedEnd is TRUE. The
fragment length criteria are specified via minFragLength and maxFragLength.

minFragLength integer giving the minimum fragment length for paired-end reads. 50 by de-
fault.

maxFragLength integer giving the maximum fragment length for paired-end reads. 600 by de-
fault. minFragLength and maxFragLength are only applicable when isPairedEnd
is TRUE. Note that when a fragment spans two or more exons, the observed frag-
ment length might be much bigger than the nominal fragment length.

nthreads integer giving the number of threads used for running this function. 1 by
default.

14 featureCounts

strandSpecific integer indicating if strand-specific read counting should be performed. It has
three possible values: 0 (unstranded), 1 (stranded) and 2 (reversely stranded). 0
by default.

minMQS integer giving the minimum mapping quality score a read must satisfy in order
to be counted. For paired-end reads, at least one end should satisfy this criteria.
0 by default.

readExtension5 integer giving the number of bases extended upstream from 5’ end of each
read. 0 by default.

readExtension3 integer giving the number of bases extended downstream from 3’ end of each
read. 0 by default.

read2pos Specifying whether each read should be reduced to its 5’ most base or 3’ most
base. It has three possible values: NULL, 5 (denoting 5’ most base) and 3 (denot-
ing 3’ most base). The default value is NULL. With the default value, the whole
read is used for summarization. When read2pos is set to 5 (or 3), read summa-
rization will be performed based on the 5’ (or 3’) most base position. read2pos
can be used together with readExtension5 and readExtension3 parameters to
set any desired length for reads.

minReadOverlap integer giving the minimum number of overlapped bases between a read and
a feature required for the read to be assigned to the feature. Negative values are
also accepted, indicating a gap being allowed between a read and a feature. 1 by
default.

countSplitAlignmentsOnly

logical indicating whether only split alignments (their CIGAR strings containing
letter ’N’) should be used for summarization. FALSE by default. Example split
alignments are exon-spanning reads from RNA-seq data. useMetaFeatures
should be set to FALSE and allowMultiOverlap should be set to TRUE, if the
purpose of summarization is to assign exon-spanning reads to all their overlap-
ping exons.

countMultiMappingReads

logical indicating if multi-mapping reads/fragments should be counted, FALSE
by default. If TRUE, a multi-mapping read will be counted up to N times if it has
N reported mapping locations. This function uses the ‘NH’ tag to find multi-
mapping reads.

countPrimaryAlignmentsOnly

logical indicating if only primary alignments should be counted. Primary and
secondary alignments are identified using bit 0x100 in the Flag field of SAM/BAM
files. If TRUE, all primary alignments in a dataset will be counted no matter they
are from multi-mapping reads or not (ie. countMultiMappingReads is ignored).

countChimericFragments

logical indicating whether a chimeric fragment, which has its two reads mapped
to different chromosomes, should be counted or not. If this fragment over-
laps with only one feature (or one meta-feature), typically by one of its two
read, this fragment will be assigned to that feature (or meta-feature). If it is
found to overlap more than one feature (or meta-feature), for example one of
its two reads overlaps meta-feature A and the other overlaps meta-feature B,
and allowMultiOverlap is FALSE, then this fragment will not be counted. This
parameter is only appliable when isPairedEnd is TRUE.

featureCounts 15

ignoreDup logical indicating whether reads marked as duplicates should be ignored. FALSE
by default. Read duplicates are identified using bit Ox400 in the FLAG field in
SAM/BAM files. The whole fragment (read pair) will be ignored if paired end.

chrAliases a character string giving the name of a file that contains aliases of chromosome
names. The file should be a comma delimited text file that includes two columns.
The first column gives the chromosome names used in the annotation and the
second column gives the chromosome names used by reads. This file should not
contain header lines. Names included in this file are case sensitive.

reportReads logical indicating if read counting result for each read/fragment is saved to a
file. If TRUE, read counting results for reads/fragments will be saved to a tab-
delimited file that contains four columns including name of read/fragment, sta-
tus(assigned or the reason if not assigned), name of target feature/meta-feature
and number of hits if the read/fragment is counted multiple times. Name of the
file is the same as name of the input read file except a suffix ‘.featureCounts’ is
added. Multiple files will be generated if there is more than one input read file.

Details

featureCounts is a general-purpose read summarization function, which assigns to the genomic
features (or meta-features) the mapped reads that were generated from genomic DNA and RNA
sequencing.

This function takes as input a set of files containing read mapping results output from a read aligner
(e.g. align), and then assigns mapped reads to genomic features. Both SAM and BAM format
input files are accepted.

The argument useMetaFeatures specifies the read summarization should be performed at the fea-
ture level or at the meta-feature level. Each entry in the annotation data is a feature, which for
example could be an exon. When useMetaFeatures is TRUE, the featureCounts function creates
meta-features by grouping features using the gene identifiers included in the “GeneID" column in
the annotation data (or in the “gene_id" attribute in the GTF format annotation file) and then assigns
reads to meta-features instead of features. The useMetaFeatures is particularly useful for gene-
level expression analysis, because it instructs this function to count reads for genes (meta-features)
instead of exons (features). Note that when meta-features are used in the read summarization, if
a read is found to overlap two or more features belong to the same meta-feature it will be only
counted once for that meta-feature.

The argument allowMultiOverlap specifies how those reads, which are found to overlap with
more than one feature (or meta-feature), should be assigned. When allowMultiOverlap is FALSE,
a read overlapping multiple features (or meta-features) will not be assigned to any of them (not
counted). Otherwise, it will be assigned to all of them. A read overlaps a meta-feature if it overlaps
at least one of the features belonging to this meta-feature.

gene and exon are typically used when summarizing RNA-seq read data, which will yield read
counts for genes and exons, respectively.

The in-built annotations for human and mouse genomes (hg19, mm9 and mm10) provided in this func-
tion can be conveniently used for read summarization. These annotations were downloaded from
the NCBI ftp server (ftp://ftp.ncbi.nlm.nih.gov/genomes/) and were then postprocessed by
removing redundant chromosomal regions within each gene and combining adjacent CDS and UTR
sequences. The in-built annotations use the SAF annotation format (see below) and their content
can be retrieved using the getInBuiltAnnotation function.

ftp://ftp.ncbi.nlm.nih.gov/genomes/

16 featureCounts

Users may also choose to provide their own annotation for summarization. If users provide a SAF
(Simplified Annotation Format) annotation, the annotation should have the following format:

GeneID Chr Start End Strand
497097 chr1 3204563 3207049 -
497097 chr1 3411783 3411982 -
497097 chr1 3660633 3661579 -
100503874 chr1 3637390 3640590 -
100503874 chr1 3648928 3648985 -
100038431 chr1 3670236 3671869 -
...

The SAF annotation format has five required columns, including GeneID, Chr, Start, End and
Strand. These columns can be in any order. More columns can be included in the annotation.
Columns are tab-delimited. Column names are case insensitive. GeneID column may contain inte-
gers or character strings. Chromosomal names included in the Chr column must match those used
inclued in the mapping results, otherwise reads will fail to be assigned. Users may provide a SAF
annotation in the form of a data frame or a file using the annot.ext argument.

Users may also provide a GTF/GFF format annotation via annot.ext argument. But GTF/GFF an-
notation should only be provided as a file, and isGTFAnnotationFile should be set to TRUE when
such a annotation is provided. featureCounts function uses the ‘gene_id’ attribute in a GTF/GFF
annotation to group features to form meta-features when performing read summarization at meta-
feature level.

When isPairedEnd is TRUE, fragments (pairs of reads) instead of reads will be counted. featureCounts
function checks if reads from the same pair are adjacent to each other (this could happen when reads
were for example sorted by their mapping locations), and it automatically reorders those reads that
belong to the same pair but are not adjacent to each other in the input read file.

Value

A list with the following components:

counts a data matrix containing read counts for each feature or meta-feature for each
library.

annotation a data frame with six columns including GeneID, Chr, Start, End and Length.
When read summarization was performed at feature level, each row in the data
frame is a feature and columns in the data frame give the annotation information
for the features. When read summarization was performed at meta-feature level,
each row in the data frame is a meta-feature and columns in the data frame give
the annotation information for the features included in each meta feature except
the Length column. For each meta-feature, the Length column gives the total
length of genomic regions covered by features included in that meta-feature.
Note that this length will be less than the sum of lengths of features included in
the meta-feature when there are features overlapping with each other. Also note

featureCounts 17

the GeneID column gives Entrez gene identifiers when the in-built annotations
are used.

targets a character vector giving sample information.

stat a data frame giving numbers of unassigned reads and the reasons why they are
not assigned (eg. ambiguity, multi-mapping, secondary alignment, mapping
quality, fragment length, chimera, read duplicate, non-junction and so on), in
addition to the number of successfully assigned reads for each library.

Author(s)

Wei Shi and Yang Liao

References

Yang Liao, Gordon K Smyth and Wei Shi. featureCounts: an efficient general-purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30(7):923-30, 2014.

See Also

getInBuiltAnnotation

Examples

Not run:
library(Rsubread)

Summarize SAM format single-end reads using built-in RefSeq annotation for mouse genome mm9:
featureCounts(files="mapping_results_SE.sam",annot.inbuilt="mm9")

Summarize single-end reads using a user-provided GTF annotation file:
featureCounts(files="mapping_results_SE.sam",annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Summarize single-end reads using 5 threads:
featureCounts(files="mapping_results_SE.sam",nthreads=5)

Summarize BAM format single-end read data:
featureCounts(files="mapping_results_SE.bam")

Perform strand-specific read counting (strandSpecific=2 if reversely stranded):
featureCounts(files="mapping_results_SE.bam",strandSpecific=1)

Summarize paired-end reads and counting fragments (instead of reads):
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE)

Count fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,
checkFragLength=TRUE,minFragLength=50,maxFragLength=600)

Count fragments that have both ends successfully aligned without checking the fragment length:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,requireBothEndsMapped=TRUE)

18 findCommonVariants

Exclude chimeric fragments from fragment counting:
featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,countChimericFragments=FALSE)

End(Not run)

findCommonVariants Finding the common variants among all input VCF files

Description

The common variants (inc. SNPs and indels) among all the input files are found. A data frame
containing these common variants is returned. The data frame has a similar format as VCF files.

Usage

findCommonVariants(VCF_files)

Arguments

VCF_files a character vector giving the names of VCF format files.

Details

This function loads all variants (SNPs and indels) from the input VCF files, and find the common
variants that are reported in all the VCF files. If a variant record in a input VCF file has multiple
alternative sequences (split by ‘,’), each alternative sequence is treated as a single variant. Two
variants in two VCF files are the same only if their genomic locations, their reference sequences,
their alternative sequences and their variant types are identical.

This function currently does not support other types of variants other than SNPs and indels.

There are eight columns in the returned data frame: chromosome name, position, identity, reference
sequence, alternative sequence, quality, filter and extra information. The input may have more
columns; these columns are not included in the data frame. If the identity, the quality, the filter and
the extra information for the same variant are different among the input VCF files, those information
associated with the lowest quality value of this variant among the VCF files is reported in the
resulted data frame. For example, if an SNP on chrX:12345 (A=>G) is reported in all the three
input VCF files, and the quality scores in the three VCF files are 100, 10, 50 respectively, the
identity, the quality, the filter and the extra information in the second VCF file are reported in the
resulted data frame for this SNP.

Value

A data frame containing the common variants among all the input VCF files is returned. The first
eight columns are: chromosome name, position, identity, reference sequence, alternative sequence,
quality, filter and extra information.

If there are not any common variants, this function returns an NA value.

getInBuiltAnnotation 19

Author(s)

Yang Liao and Wei Shi

Examples

Not run:
finding the common variants between to input VCF files: a.vcf and b.vcf
library(Rsubread)
findCommonVariants(c(a.vcf,b.vcf))

End(Not run)

getInBuiltAnnotation Retrieve in-built annotations provided by featureCounts function

Description

Retrieve an in-built annotation and save it to a data frame

Usage

getInBuiltAnnotation(annotation="mm9")

Arguments

annotation a character string specifying the in-built annotation to be retrieved. It has three
possible values including mm9, mm10 and hg19, corresponding to the NCBI Ref-
Seq annotations for genomes ‘mm9’, ‘mm10’ and ‘hg19’, respectively. mm9 by
default.

Details

The featureCounts read summarization function provides in-built annotations for conveniently
summarizing reads to genes or exons, and this function allows users to have access to those in-built
annotations.

For more information about these annotations, please refer to the help page for featureCounts
function.

Value

A data frame with five columns including GeneID, Chr, Start, End and Strand.

Author(s)

Wei Shi

20 processExons

See Also

featureCounts

Examples

library(Rsubread)
x <- getInBuiltAnnotation("hg19")
x[1:5,]

processExons Obtain chromosomal coordiates of each exon using NCBI annotation

Description

This is for internal use.

Usage

processExons(filename="human_seq_gene.md", species="hg")

Arguments

filename a character string giving the name of input .md file (NCBI annotation file)

species a character string specifying the species

Details

The NCBI annotation file gives the chromosomal coordinates of UTR (Untranslated region) and
CDS (Coding sequence). This function uses these information to derive the chromosomal coor-
dinates of exons. The first and last exons of genes usually contain both UTR sequence and CDS
sequence.

Value

A text file containing chromosomal coordinates of each exon.

Author(s)

Zhiyin Dai and Wei Shi

propmapped 21

propmapped Calculate the proportion of mapped reads/fragments in SAM/BAM
files

Description

Number of mapped reads/fragments will be counted and fraction of such reads/fragments will be
calculated.

Usage

propmapped(files,countFragments=TRUE,properlyPaired=FALSE)

Arguments

files a character vector giving the names of SAM/BAM format files. Format of input
files is automatically determined by the function.

countFragments logical, indicating if reads for fragments (read pairs) should be counted. If TRUE,
fragments will be counted when paired-end read data are provided. The function
automatically detects if the data are single end or paired end.

properlyPaired logical, indicating if only properly paired reads will be counted. This is only
applicable for paired end data. FALSE by default.

Details

This function uses the FLAG field in the SAM/BAM to look for mapped reads and count them.
Reads/fragments, which have more than one reported location, will be reported only once.

When counting single end reads, counting reads has the same meaning with counting fragments
(the results are identical).

Value

A data frame containing the total number of reads, number of mapped reads and proportion of
mapped reads for each library.

Author(s)

Wei Shi

Examples

build an index using the sample reference sequence provided in the package
and save it to the current directory
library(Rsubread)
ref <- system.file("extdata","reference.fa",package="Rsubread")
buildindex(basename="./reference_index",reference=ref)

22 qualityScores

align the sample read data provided in this packge to the sample reference
and save the mapping results to the current directory
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
align(index="./reference_index",readfile1=reads,output_file="./Rsubread_alignment.BAM")

get the percentage of successfully mapped reads
propmapped("./Rsubread_alignment.BAM")

qualityScores Extract quality score data in a sequencing read dataset

Description

Extract quality strings and convert them to Phred scores

Usage

qualityScores(filename, input_format="gzFASTQ", offset=33, nreads=10000)

Arguments

filename character string giving the name of an input file containing sequence reads.

input_format character string specifying format of the input file. gzFASTQ (gzipped FASTQ)
by default. Acceptable formats include gzFASTQ, FASTQ, SAM and BAM. Character
string is case insensitive.

offset numeric value giving the offset added to the base-calling Phred scores. Possible
values include 33 and 64. By default, 33 is used.

nreads numeric value giving the number of reads from which quality scores are ex-
tracted. 10000 by default.

Details

Quality scores of read bases are represented by ASCII characters in next-gen sequencing data. This
function extracts the quality characters from each base in each read and then converts them to Phred
scores using the provided offset value (offset).

If the total number of reads in a dataset is n, then every n/nreads read is extracted from the input
data.

Value

A data matrix containing Phred scores for read bases. Rows in the matrix are reads and columns are
base positions in each read.

Author(s)

Wei Shi, Yang Liao and Zhiyin Dai

removeDupReads 23

Examples

library(Rsubread)
reads <- system.file("extdata","reads.txt.gz",package="Rsubread")
x <- qualityScores(filename=reads,offset=64,nreads=1000)
x[1:10,1:10]

removeDupReads Remove sequencing reads which are mapped to identical locations

Description

Remove reads which are mapped to identical locations, using mapping location of the first base of
each read.

Usage

removeDupReads(SAMfile,threshold=50,outputFile)

Arguments

SAMfile a character string giving the name of a SAM format input file.

threshold a numeric value giving the threshold for removing duplicated reads, 50 by de-
fault. Reads will be removed if they are found to be duplicated equal to or more
than threshold times.

outputFile a character string giving the base name of output files.

Details

This function uses the mapping location of first base of each read to find duplicated reads. Reads
are removed if they are duplicated more than threshold number of times.

Value

A SAM file including the remaining reads after duplicate removal.

Author(s)

Yang Liao and Wei Shi

24 sam2bed

RsubreadUsersGuide View Rsubread Users Guide

Description

Users Guide for Rsubread and Subread

Usage

RsubreadUsersGuide()

Details

The Subread/Rsubread Users Guide provides detailed description to the functions and programs
included in the Subread and Rsubread software packages. It also includes case studies for analyzing
next-gen sequencing data.

The Subread package is written in C and it can be downloaded from http://subread.sourceforge.
net. The Rsubread package provides R wrappers functions for many of the programs included in
Subread package.

Value

Character string giving the file location.

Author(s)

Wei Shi

See Also

vignette

sam2bed Convert a SAM format file to a BED format file

Description

SAM to BED conversion

Usage

sam2bed(samfile,bedfile,readlen)

http://subread.sourceforge.net
http://subread.sourceforge.net

sam2bed 25

Arguments

samfile character string giving the name of input file. Input format should be in SAM
format.

bedfile character string giving the name of output file. Output file is in BED format.

readlen numeric value giving the length of reads included in the input file.

Details

This function converts a SAM format file to a BED format file, which can then be displayed in a
genome browser like UCSC genome browser, IGB, IGV.

Value

No value is produced but a BED format file is written to the current working directory. This file
contains six columns including chromosomal name, start position, end position, name(‘.’), mapping
quality score and strandness.

Author(s)

Wei Shi

Index

∗Topic documentation
RsubreadUsersGuide, 24

align, 2, 7, 15
atgcContent, 6

buildindex, 5, 7

createAnnotationFile, 8

detectionCall, 9
detectionCallAnnotation, 10

exactSNP, 10

featureCounts, 12, 19, 20
findCommonVariants, 18

getInBuiltAnnotation, 15, 17, 19

processExons, 20
propmapped, 21

qualityScores, 22

removeDupReads, 23
RsubreadUsersGuide, 24

sam2bed, 24
subjunc, 7
subjunc (align), 2

vignette, 24

write.Rsubread (createAnnotationFile), 8

26

	align
	atgcContent
	buildindex
	createAnnotationFile
	detectionCall
	detectionCallAnnotation
	exactSNP
	featureCounts
	findCommonVariants
	getInBuiltAnnotation
	processExons
	propmapped
	qualityScores
	removeDupReads
	RsubreadUsersGuide
	sam2bed
	Index

