
chroGPS: visualizing the epigenome.

Oscar Reina ∗and David Rossell ∗

1 Introduction

The chroGPS package provides tools to generate intuitive maps to visualize the as-
sociation between genetic elements, with emphasis on epigenetics. The approach is
based on Multi-Dimensional Scaling. We provide several sensible distance metrics,
and adjustment procedures to remove systematic biases typically observed when
merging data obtained under different technologies or genetic backgrounds. This
manual illustrates the software functionality and highlights some ideas, for a de-
tailed technical description the reader is referred to the supplementary material on
[Font-Burgada et al., 2013].

Many routines allow performing computations in parallel by specifying an argu-
ment mc.cores, which uses package parallel.

We start by loading the package and a ChIP-chip dataset with genomic distribution
of 20 epigenetic elements from the Drosophila melanogaster S2-DRSC cell line, com-
ing from the modEncode project, which we will use for illustration purposes. Even
though our study and examples focuses on assessing associations between genetic
elements, this methodology can be successfully used with any kind of multivariate
data where relative distances between elements of interest can be computed based
on a given set of variables.

2 chroGPSfactors

> options(width=70)

> par(mar=c(2,2,2,2))

> library(chroGPS)

> data(s2) # Loading Dmelanogaster S2 modEncode toy example

> data(toydists) # Loading precomputed distGPS objects

> s2

RangedDataList of length 20

names(20): ASH1-Q4177.S2 CP190-HB.S2 ... Su(var)3-9.S2 mod2.2-VC.S2

s2 is a RangedDataList object storing the binding sites for 20 Drosophila melanogaster
S2-DRSC sample proteins. Data was retrieved from the modEncode website (www.modencode.org)

∗Bioinformatics & Biostatistics Unit, IRB Barcelona

1

and belongs to the public subset of the Release 29.1 dataset. GFF files were down-
loaded, read and formatted into individual RangedData objects, stored later into a
RangedDataList (see functions getURL and gff2RDList for details.) For shortening
computing time for the dynamic generation of this document, some of the distances
between epigenetic factors have been precomputed and stored in the toydists ob-
ject.

2.1 Building chroGPSfactors maps

The methodology behing chroGPSfactors is to generate a distance matrix with all the
pairwise distances between elements of interest by means of a chosen metric. After
this, a Multidimensional Scaling representation is generated to fit the n-dimensional
distances in a lower (usually 2 or 3) k-dimensional space.

> # d <- distGPS(s2, metric='avgdist')
> d

Object of class distGPS with avgdist distances between 20 objects

> mds1 <- mds(d,k=2,type='isoMDS')
> mds1

Object of class MDS approximating distances between 20 objects

R-squared= 0.6284 Stress= 0.0795

> mds1.3d <- mds(d,k=3,type='isoMDS')
> mds1.3d

Object of class MDS approximating distances between 20 objects

R-squared= 0.8577 Stress= 0.0287

The R2 coefficient between the original distances and their approximation in the
plot can be seen as an analogue to the percentage of explained variability in a PCA
analysis. For our sample data R2=0.628 and stress=0.079 in the 2-dimensional plot,
both of which indicate a fairly good fit. A 3-dimensional plot improves these values.
We can produce a map by using the plot method for MDS objects. The result in
shown in Figure 1. For 3D representations the plot method opens an interactive
window that allows to take full advantage of the additional dimension. Here we com-
mented out the code for the 3D plot and simply show a snapshot in Figure 1. Short
names for modEncode factors as well as colors for each chromatin domain identified
(lightgreen=transcriptionally active elements, purple=Polymerase, grey=boundary
elements, yellow=Polycomb repression, lightblue=HP1 repression) are provided in
the data frame object s2names, stored within s2.

> cols <- as.character(s2names$Color)

> plot(mds1,drawlabels=TRUE,point.pch=20,point.cex=8,text.cex=.7,

+ point.col=cols,text.col='black',labels=s2names$Factor,font=2)
> legend('topleft',legend=sprintf('R2=%.3f / stress=%.3f',getR2(mds1),getStress(mds1)),
+ bty='n',cex=1)
> #plot(mds1.3d,drawlabels=TRUE,type.3d='s',point.pch=20,point.cex=.1,text.cex=.7,
> #point.col=cols,text.col='black',labels=s2names$Factor)

2

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

1.
0

ASH1
CP190

CTCF

EZ

H3K23AC
H3K27ME3

H3K36ME3

H3K4ME3H3K79ME2

H3K9ME2
H3K9ME3

HP1A

HP1B

JHDM1

JMJD2A

PC

RNAPOL2

SU(HW)

SU(VAR)39

MOD2

R2=0.628 / stress=0.079

Figure 1: 2D map from the 20 S2 epigenetic factors and example 3D map with 76
S2 factors. Factors with more similar binding site distribution appear closer.

3

2.2 Integrating data sources: technical background

Currently, genomic profiling of epigenetic factors is being largely determined through
high throughput methodologies such as ultra-sequencing (ChIP-Seq), which identi-
fies binding sites with higher accuracy that ChIP-chip experiments. However, there
is an extensive knowledge background based on the later. ChroGPS allows integrat-
ing different technical sources by adjusting for systematic biases.

We propose two adjustment methods: Procrustes and Peak Width Adjustment.
Procrustes finds the optimal superimposition of two sets of points by altering their
location, scale and orientation while maintaining their relative distances. It is there-
fore a general method of adjustment that can take care of several kind of biases.
However, its main limitation is that a minimal set of common points (that is, the
same factor/protein binding sites mapped in both data sources) is needed to effec-
tively perform a valid adjustment. Due to the spatial nature of Procrustes adjust-
ment, we strongly recommend a minimum number of 3 common points.

We illustrate the adjustments by loading Drosophila melanogaster S2 ChIP-seq
data obtained from NCBI GEO GSE19325, http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE19325. We start by producing a joint map with no adjust-
ment.

> data(s2Seq)

> s2Seq

RangedDataList of length 4

names(4): GSM480156_dm3-S2-H3K4me3.bed.rd ...

> # d2 <- distGPS(c(s2,s2Seq),metric='avgdist')
> mds2 <- mds(d2,k=2,type='isoMDS')
> cols <- c(as.character(s2names$Color),as.character(s2SeqNames$Color))

> sampleid <- c(as.character(s2names$Factor),as.character(s2SeqNames$Factor))

> pchs <- rep(c(20,17),c(length(s2),length(s2Seq)))

> point.cex <- rep(c(8,5),c(length(s2),length(s2Seq)))

> par(mar=c(2,2,2,2))

> plot(mds2,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,

+ point.col=cols,text.col='black',labels=sampleid,font=2)
> legend('topleft',legend=sprintf('R2=%.3f / stress=%.3f',getR2(mds2),getStress(mds2)),
+ bty='n',cex=1)
> legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

Figure 2 shows the resulting map. While ChIP-seq elements appear close to their
ChIP-chip counterparts, they form an external layer. We now apply Procrustes to
adjust these systematic biases using function procrustesAdj.

> adjust <- rep(c('chip','seq'),c(length(s2),length(s2Seq)))
> sampleid <- c(as.character(s2names$Factor),as.character(s2SeqNames$Factor))

> mds3 <- procrustesAdj(mds2,d2,adjust=adjust,sampleid=sampleid)

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds3,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,

+ point.col=cols,text.col='black',labels=sampleid,font=2)
> legend('topleft',legend=sprintf('R2=%.3f / stress=%.3f',getR2(mds3),getStress(mds3)),
+ bty='n',cex=1)
> legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

4

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19325
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19325

RangedDataList of length 4

names(4): GSM480156_dm3-S2-H3K4me3.bed.rd ...

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

1.
0

ASH1

CP190 CTCF

EZ

H3K23AC

H3K27ME3

H3K36ME3

H3K4ME3H3K79ME2

H3K9ME2
H3K9ME3

HP1A

HP1B

JHDM1

JMJD2A

PC

RNAPOL2

SU(HW)

SU(VAR)39

MOD2

H3K4ME3

H3K27ME3

H3K36ME3

POL2Ser5

R2=0.608 / stress=0.083 ● ChIP−Chip
ChIP−Seq

Figure 2: S2 ChIP-chip and ChIP-Seq data, raw integration (no adjustment).

5

ASH1

CP190 CTCF

EZ

H3K23AC

H3K27ME3

H3K36ME3

H3K4ME3H3K79ME2

H3K9ME2
H3K9ME3

HP1A

HP1B

JHDM1

JMJD2A

PC

RNAPOL2

SU(HW)

SU(VAR)39

MOD2

H3K4ME3

H3K27ME3

H3K36ME3

POL2Ser5

R2=0.790 / stress=0.081 ● ChIP−Chip
ChIP−Seq

ASH1

CP190

CTCF

EZ

H3K23AC

H3K27ME3

H3K36ME3

H3K4ME3
H3K79ME2

H3K9ME2
H3K9ME3

HP1A

HP1B

JHDM1

JMJD2A

PC

RNAPOL2
SU(HW)

SU(VAR)39

MOD2

H3K4ME3

H3K27ME3

H3K36ME3

POL2Ser5

R2=0.686 / s=0.073 ● ChIP−Chip
ChIP−Seq

Figure 3: S2 ChIP-chip and ChIP-Seq data. Left: Procrustes adjustment. Right:
Peak Width Adjustment.

Peak Width Adjustment relies on the basic difference between the two different
sources of information used in our case, that is, the resolution difference between
ChIP-Seq and ChIP-chip peaks, which translates basically in the width presented
by the regions identified as binding sites, being those peaks usually much wider in
ChIP-chip data (poorer resolution).

> s2.pAdj <- adjustPeaks(c(s2,s2Seq),adjust=adjust,sampleid=sampleid,logscale=TRUE)

> # d3 <- distGPS(s2.pAdj,metric='avgdist')
> mds4 <- mds(d3,k=2,type='isoMDS')
> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds4,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,

+ point.col=cols,text.col='black',labels=sampleid,font=2)
> legend('topleft',legend=sprintf('R2=%.3f / s=%.3f',getR2(mds4),getStress(mds4)),
+ bty='n',cex=1)
> legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

Figure 3 shows the map after Peak Width Adjustment, where ChIP-chip and
ChIP-seq elements have been adequately matched. Whenever possible, we strongly
recommend using Procrustes adjustment due to its general nature and lack of mech-
anistic assumptions. This is even more important if integrating other data sources
for binding site discovery, such as DamID, Chiapet, etc, where technical biases are
more complex than just peak location resolution and peak size.

3 ChroGPSgenes

In addition to assessing relationship between epigenetic factors, chroGPS also pro-
vides tools to generate chroGPSgenes maps, useful to visualize the relationships be-
tween genes based on their epigenetic pattern similarities (the epigenetic marks they
share).

6

3.1 Building chroGPSgenes maps

The proceedings are analog to those of chroGPSfactors, that is, the definition of a
metric to measure similarity between genes and using it to generate MDS represen-
tations in k-dimensional space. The data source of chroGPSgenes has to be a matrix
or data frame of N genes x M factors (rows x cols), where each cell has a value of 1
if a binding site for that protein or factor has been found in the region defined by
that gene. This annotation table can be generated by multiple methods, in our case
we annotated the genomic distribution on 76 S2 modEncode against the Drosophila
melanogaster genome (Ensembl february 2012), accounting for strict overlaps within
1000bp of gene regions, using the annotatePeakInBatch function from the ChIP-

peakAnno package [Zhu et al., 2010]. After that, 500 random genes were selected
randomly and this is the dataset that will be used in all further examples.

> s2.tab[1:10,1:4]

ASH1-Q4177.S2 BEAF-70.S2 BEAF-HB.S2 Chro(Chriz)BR.S2

FBgn0051778 0 0 0 0

FBgn0028562 0 0 0 0

FBgn0011653 0 0 0 0

FBgn0262889 0 0 0 0

FBgn0030056 1 0 1 1

FBgn0035496 0 0 0 0

FBgn0026149 1 0 1 1

FBgn0030142 0 0 1 1

FBgn0003008 0 1 1 1

FBgn0052703 0 0 0 0

> d <- distGPS(s2.tab, metric='tanimoto', uniqueRows=TRUE)

> d

Object of class distGPS with tanimoto distances between 466 objects

> mds1 <- mds(d,k=2,type='isoMDS')
> mds1

Object of class MDS approximating distances between 466 objects

R-squared= 0.8217 Stress= 0.1269

> mds2 <- mds(d,k=3,type='isoMDS')
> mds2

Object of class MDS approximating distances between 466 objects

R-squared= 0.8884 Stress= 0.0757

Increasing k improves the R2 and stress values. For our examples here we use
non-metric isoMDS by indicating type=’isoMDS’, which calls the isoMDS function
from the MASS package [Venables and Ripley, 2002].

> par(mar=c(2,2,2,2))

> plot(mds1,point.cex=1.5,point.col=densCols(getPoints(mds1)))

> #plot(mds2,point.cex=1.5,type.3d='s',point.col=densCols(getPoints(mds2)))

7

Figure 4: 2 and 3-dimensional chroGPSgenes. Genes with more similar epigenetic
marks (binding site patterns) appear closer.

3.2 Genome-wide chroGPSgenes maps

As mentioned, our example dataset for chroGPSgenes maps consists in a combination
of 76 protein binding sites for 500 genes. When only unique factor combinations are
considered (all genes sharing a specific combination of epigenetic marks are merged
into a single ’epigene’), the size of the dataset gets down to 466 genes per 76 factors.

> dim(s2.tab)

[1] 500 76

> dim(uniqueCount(s2.tab))

[1] 466 78

However, when genome-wide patterns are considered, the number of epigenes
can still be very high, in the order of ten thousand unique epigenes. This poses a
real challenge for Multidimensional Scaling when trying to find an optimal solution
for k-space representation of the pairwise distances both in terms of accuracy and
computational cost.

We start by re-running the isoMDS fit and measuring the CPU time.

> system.time(mds3 <- mds(d,k=2,type='isoMDS'))

user system elapsed

4.331 0.020 4.356

> mds3

Object of class MDS approximating distances between 466 objects

R-squared= 0.8217 Stress= 0.1269

8

We now apply our BoostMDS algorithm, which is a 2-step procedure (see pack-
age help for function mds and Supplementary Methods of [Font-Burgada et al., 2013]
for details). BoostMDS generates maps at much lower time and memory consump-
tion requirements, while improving the R2 and stress coefficients. The first step is
to obtain an initial solution by randomly splitting the original distance matrix in a
number of smaller submatrices with a certain number of overlapping elements be-
tween them, so that individual MDS representations can be found for each one and
later become stitched by using Procrustes with their common points. The second
step is to formally maximize the R2 coefficient by using a gradient descent algo-
rithm using the boostMDS function. The second step also ensures that the arbitrary
split used in the first step does not have a decisive effect on the final MDS point
configuration.

> system.time(mds3 <- mds(d,type='isoMDS',splitMDS=TRUE,split=.5,overlap=.05,mc.cores=1))

user system elapsed

1.340 0.026 1.377

> mds3

Object of class MDS approximating distances between 466 objects

R-squared= 0.8002 Stress= 0.1301

> system.time(mds4 <- mds(d,mds3,type='boostMDS',scale=TRUE))

Sampling 100 elements...

Correl Step size

0.7651936

0.8059597 0.04414643

0.8189542 0.0216275

0.8212578 0.0184511

0.8224748 0.01060938

0.8233287 0.01373785

user system elapsed

0.991 0.031 1.023

> mds4

Object of class MDS approximating distances between 466 objects

R-squared= 0.8457 Stress= 0.1224

Here BoostMDS provided a better solution in terms of R2 and stress than
isoMDS, at a lower computational time. Our experience is that in a real exam-
ple with tens of thousands of points the advantages become more extreme.

3.3 Annotating chroGPSgenes maps with quantitative infor-
mation

Gene expression, coming from a microarray experiment or from more advanced RNA-
Seq techniques is probably one of the first sources of information to be used when
studying a given set of genes. Another basic source of information from epigenetic
data is the number of epigenetic marks present on a given set of genes. It is known
that some genes present more complex regulation programs that make necessary the

9

co-localization of several DNA binding proteins.

ChroGPSgenes maps provide a straightforward way of representing such informa-
tion over a context-rich base. Basically, coloring epigenes according to a color scale
using their average gene expression or number of epigenetic marks is sufficient to
differentiate possible regions of interest. Thus, our chroGPSgenes map turn into a
context-rich heatmap where genes relate together due to their epigenetic similarity
and at the same time possible correlation with gene expression is clearly visible.
Furthermore, if expression data along a timeline is available, for instance on an ex-
periment studying time-dependant gene expression after certain knock-out or gene
activation, one can track expression changes on specific map regions.

In our case, we will use expression information coming from a microarray assay
involving normal Drosophila S2-DSRC cell lines. The object s2.wt has normalized
median expression value per gene and epigene (i.e., we compute the median expres-
sion of all genes with the same combination of epigenetic marks). The resulting plot
is shown in Figure 5

> summary(s2.wt$epigene)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
2.192 4.518 8.934 7.917 10.570 13.260 47

> summary(s2.wt$gene)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
2.136 3.987 8.343 7.454 10.430 13.260 31

> plot(mds1,point.cex=1.5,scalecol=TRUE,scale=s2.wt$epigene,

+ palette=rev(heat.colors(100)))

3.4 Annotating chroGPSgenes maps: clustering

A natural way to describe chroGPSgenes maps is to highlight a set of genes of in-
terest, for instance those possessing an individual epigenetic mark. One can repeat
this step for several interesting gene sets but this is cumbersome and doesn’t lead to
easy interpretation unless very few sets are considered. A more advanced approach
is to analyze the whole set of epigene dissimilarities by clustering, allowing us to
detect genes with similar epigenetic patterns. Again, using colors to represent genes
in a given cluster gives an idea of the underlying structure, even though overlapping
areas are difficult to follow, specially as the number of considered clusters increase.
We now use hierarchical clustering with average linkage to find gene clusters. We
will illustrate an example where we consider a partition with between cluster dis-
tances of 0.5.

Clustering algorithms may deliver a large number of small clusters which are difficult
to interpret. To overcome this, we developed a preMerge step that assigns clusters
below a certain size to its closest cluster according to centroid distances. After the
pre-merging step, the number of clusters is reduced considerably, and all them have

10

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●
●●●●●●●●●● ●●

●

●
●

●
●●●

● ●

●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●

●●
●●
●

●●

●
●
●●●
●
●●●

●

●

●●●
●●●

●

●●● ●●
●●●●

●

●

●
●●

●●●●

●

●●●

●

●

●

●●●

●

●●●●● ●●●●
●

●

●

●

●

●

●●

●

●

●●
●●●

●

●

●

●
●

●

●
●

●●●
●●

●
●●●●●●

●

●

●
●

●●
●● ●●●

●
●●●●●●●●

● ●
●

●
●●

●
●

●
●●●●●
●

●
●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●●●

●

●
●

●
●

●
●●●●●
●
●

●

●

●●●
●

●

●

●

●●●●
●●●
●

●

●

●●●
●

●●●
●

●●●●●●●●●●●
●

●
●
●●

●●

●

●●
●

●●●●●●●●
●

● ●
●

●

●

●

●

●

●
● ●

●

●
●

●●
●●
●●

●
●●

●●
●
●●●●●●●

●●●●●●●●●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 5: 2-dimensional MDS plot with chroGPSgenes map and gene expression
information.

11

a minimum size which allows easier map interpretation. The function clusGPS inte-
grates a clustering result into an existing map. It also computes density estimates for
each cluster in the map, which can be useful to assess cluster separation and further
merge clusters, as we shall see later. We will first perform a hierarchical clustering
over the distance matrix, which we can access with the as.matrix function.

> h <- hclust(as.dist(as.matrix(d)),method='average')
> set.seed(149) # Random seed for the MCMC process within density estimation

> clus <- clusGPS(d,mds1,h,ngrid=1000,densgrid=FALSE,verbose=TRUE,

+ preMerge=TRUE,k=max(cutree(h,h=0.5)),minpoints=20,mc.cores=1)

Precalculating Grid

Pre-merging non-clustered points in nodules of size 20...

Calculating posterior density of mis-classification for cluster: 1

Calculating posterior density of mis-classification for cluster: 2

Calculating posterior density of mis-classification for cluster: 6

Calculating posterior density of mis-classification for cluster: 28

Calculating posterior density of mis-classification for cluster: 56

Calculating posterior density of mis-classification for cluster: 89

Adjusting posterior probabilities...

> clus

Object of class clusGPS with clustering for 466 elements.

1 clustering configuration(s) with name(s) 125

We can represent the output of clusGPS graphically using the plot method.
The result in shown in Figure 6. We appreciate that the the resulting configuration
presents a main central cluster (cluster 56, n=293 epigenes, colored in blue) con-
taining more than 50 percent of genes in all map, and is surrounded by smaller ones
that distribute along the external sections of the map. Our functions clusNames

and tabClusters provides information about the name and size of the cluster par-
titions stored within a clusGPS object. The function clusterID can be used to
retrieve the vector of cluster assignments for the elements of a particular clustering
configuration.

> clus

Object of class clusGPS with clustering for 466 elements.

1 clustering configuration(s) with name(s) 125

> clusNames(clus)

12

[1] "125"

> tabClusters(clus,125)

1 2 6 28 56 89

39 38 25 48 293 23

> point.col <- rainbow(length(tabClusters(clus,125)))

> names(point.col) <- names(tabClusters(clus,125))

> point.col

1 2 6 28 56

"#FF0000FF" "#FFFF00FF" "#00FF00FF" "#00FFFFFF" "#0000FFFF"

89

"#FF00FFFF"

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.col=point.col[as.character(clusterID(clus,125))],

+ point.pch=19)

Different clustering algorithms can deliver significantly different results, thus it
is important to decide how to approach the clustering step depending on your data.
Our example using hclust with average linkage tends to divide smaller and more
divergent clusters before, while other methods may first ’attack’ the most similar
agglomerations. You can use any alternative clustering algorithm by formatting its
result as an hclust object h and passing it to the clusGPS function.

3.5 Cluster visualization with density contours

We achieve this by using a contour representation to indicate the regions in the map
where a group of genes (ie genes with a given mark) locate with high probability.
The contour representation provides a clearer visualization of the extent of overlap
between gene sets, in an analog way to those of the popular Venn diagrams but with
the benefit of a context-rich base providing a functional context for interpretation.

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.cex=1.5,point.col='grey')
> for (p in c(0.95, 0.50))

+ plot(clus,type='contours',k=max(cutree(h,h=0.5)),lwd=5,probContour=p,
+ drawlabels=TRUE,labcex=2,font=2)

The clusGPS function computes Bayesian non-parametric density estimates us-
ing the DPdensity function from the DPPackage package, but individual contours
can be generated and plotted by just calling the contour2dDP function with a given
set of points from the MDS object. Keep in mind that computation of density es-
timates may be imprecise with clusters of very few elements. Check the help of
the clusGPS function to get more insight on the minpoints parameter and how it
relates to the preMerge step described above.

3.6 Assessing cluster separation in chroGPSgenes maps

Deciding the appropiate number of clusters is not an easy question. chroGPS pro-
vides a method to evaluate cluster separation in the lower dimensional representa-
tion. The cluster density estimates can be used to compute the posterior expected

13

●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

 1

 2

 6

 28

 56

 89

 1

 1

 2

 6

 28

 89

Figure 6: 2-dimensional MDS plot with chroGPSgenes map and cluster identities
indicated by point colors (left) and probabilistic contours drawn at 50 and 95 percent
(right).

correct classification rate (CCR) for each point, cluster and for the whole map, thus
not only giving an answer to how many clusters to use, but also to show reproducible
are the individual clusters in the chosen solution. Intuitively, when two clusters
share a region of high density in the map, their miss-classification rate increases.
We can assess the CCR for each cluster using the plot function with the argument
type=’stats’. Figure 7 shows the obtained plot. The dashed black line indicates
the overall CCR for the map, which is slightly lower than 0.9. All individual clusters
have a CCR ≥ 0.8.

> plot(clus,type='stats',k=max(cutree(h,h=0.5)),ylim=c(0,1),col=point.col,cex=2,pch=19,
+ lwd=2,ylab='CCR',xlab='Cluster ID',cut=0.75,cut.lty=3,axes=FALSE)
> axis(1,at=1:length(tabClusters(clus,125)),labels=names(tabClusters(clus,125))); axis(2)

> box()

3.7 Locating genes and factors on chroGPSgenes maps

A natural question is where genes having a given epigenetic mark tend to locate on
the map. An easy solution is just to highlight those points on a map, but that may
be misleading, especially when multiple factors are considered simultaneously. We
offer tools to locate high-probability regions (i.e. regions on the map containing a
certain proportion of all the genes with a given epigenetic mark or belonging to a
specific Gene Ontology term). For instance, we will highlight the genes with the
epigenetic factor HP1a. The result is shown in Figure 9 (left). We see that HP1a
shows a certain bimodality in its distribution, with a clear presence in the central
clusters (56, 89) but also in the upper left region of the map (cluster 1 and to a
lesser extent, 28).

14

●
●

●

●

●
●

Cluster ID

C
C

R

1 2 6 28 56 89

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Per-cluster (dots and continuous line) and global (dashed line) Correct
Classification Rate. Red pointed line indicates an arbitrary threshold of 0.75 CCR.
Higher values indicate more robust clusters which are better separated in space.

15

●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

 1

 1

 2

 6

 28

 89
 1

 2

 6

 28

 56

 89

HP1a contours (10 to 90 percent)

Figure 8: chroGPSgenes map with cluster contours at 50 and 95 percent the 5 clusters
presented above. In black, probability contour for HP1a factor.

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.cex=1.5,point.col='grey')
> for (p in c(0.5,0.95)) plot(clus,type='contours',k=max(cutree(h,h=0.5)),lwd=5,probContour=p,
+ drawlabels=TRUE,labcex=2,font=2)

> fgenes <- uniqueCount(s2.tab)[,'HP1a_wa184.S2']==1
> set.seed(149)

> c1 <- contour2dDP(getPoints(mds1)[fgenes,],ngrid=1000,contour.type='none')

> for (p in seq(0.1,0.9,0.1)) plotContour(c1,probContour=p,col='black')
> legend('topleft',lwd=1,lty=1,col='black',legend='HP1a contours (10 to 90 percent)',bty='n')

Highlighting a small set of genes on the map (e.g. canonical pathways) is also
possible by using the geneSetGPS function. We randomly select 10 genes for illus-
tration purposes. Figure 9 (right) shows the results.

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.cex=1.5,point.col='grey')
> for (p in c(0.5,0.95)) plot(clus,type='contours',k=max(cutree(h,h=0.5)),lwd=5,probContour=p,
+ drawlabels=TRUE,labcex=2,font=2)

> set.seed(149) # Random seed for random gene sampling

> geneset <- sample(rownames(s2.tab),10,rep=FALSE)

> mds2 <- geneSetGPS(s2.tab,mds1,geneset,uniqueCount=TRUE)

16

●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

 1

 1

 2

 6

 28

 89
 1

 2

 6

 28

 56

 89

●●
●

●

●●
●●

●
●●●
●

●

●
●

●●

●
●12
3

4

5
6

78

9
10

1: FBgn0000575
2: FBgn0085390
3: FBgn0262126
4: FBgn0034658
5: FBgn0052641
6: FBgn0063385
7: FBgn0260746
8: FBgn0004511
9: FBgn0037609
10: FBgn0037668

Figure 9: chroGPSgenes map with cluster contours at 50 and 95 percent the 5 clusters
presented above. Left: In black, probability contour for HP1a factor. Right: random
geneset located on the chroGPSgenes map.

> points(getPoints(mds2),col='black',cex=5,lwd=4,pch=20)
> points(getPoints(mds2),col='white',cex=4,lwd=4,pch=20)
> text(getPoints(mds2)[,1],getPoints(mds2)[,2],1:nrow(getPoints(mds2)),cex=1.5)

> legend('bottomright',col='black',legend=paste(1:nrow(getPoints(mds2)),
+ geneset,sep=': '),cex=1,bty='n')

3.8 Merging overlapping clusters

As discussed in Section 3.6, for our toy example clusters obtained by setting a
between-cluster distance threshold of 0.5 are well-separated and the CCR is high.
When the number of points is higher or the threshold is set to a lower value, it is
common that some clusters overlap substantially, hampering interpretation. Cluster
density estimates offer us an elegant way to detect significant cluster overlap over
the space defined by our MDS map, and thus allow us to merge clearly overlapping
clusters. Our approach performs this merging in an unsupervised manner, by merg-
ing in each step the two clusters having maximum spatial overlap, and stopping
when the two next clusters to merge show an overlap substantially lower than that
from previous steps. For more details, check help for the function cpt.mean in the
changepoint package. By obtaining clusters which better separate in space, their
rate of correct classification also improves, delivering a map configuration which is

17

robust, intuitive, and easy to interpret, specially with very populated maps where
the initial number of clusters may be very high.

To illustrate the usefulness of cluster merging in some conditions, we will use a
different cluster cut so that their boundaries overlap more significantly in our 2D
map. We then merge clusters using the mergeClusters function.

> set.seed(149) # Random seed for MCMC within the density estimate process

> clus2 <- clusGPS(d,mds1,h,ngrid=1000,densgrid=FALSE,verbose=TRUE,

+ preMerge=TRUE,k=max(cutree(h,h=0.2)),minpoints=20,mc.cores=1)

Precalculating Grid

Pre-merging non-clustered points in nodules of size 20...

Calculating posterior density of mis-classification for cluster: 1

Calculating posterior density of mis-classification for cluster: 2

Calculating posterior density of mis-classification for cluster: 6

Calculating posterior density of mis-classification for cluster: 42

Calculating posterior density of mis-classification for cluster: 148

Calculating posterior density of mis-classification for cluster: 156

Calculating posterior density of mis-classification for cluster: 200

Calculating posterior density of mis-classification for cluster: 201

Calculating posterior density of mis-classification for cluster: 245

Adjusting posterior probabilities...

> par(mar=c(2,2,2,2))

> clus3 <- mergeClusters(clus2,brake=0,mc.cores=1)

> clus3

Object of class clusGPS with clustering for 466 elements.

1 clustering configuration(s) with name(s) 330

> tabClusters(clus3,330)

1 2 3 4 5

45 44 323 30 24

18

1 2 3 4 5 6 7 8

−
3

−
2

−
1

0
1

0.88
0.71

0.5
0.43

0.08 0.07

0.04 0.04

of clusters by overlap threshold

8 7 6 5 4 3 2 1

●

Figure 10: Overview of maximum cluster overlap observed in each merging step.
Merging stops at 5 clusters, when the next two clusters to merge show an overlap
differing significantly in mean to those from previous steps.

19

●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

 1

 2

 6

 42

 1
48

 201

 245

 1

 2

 6

 42
●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●
●

●●●●
●●●●●● ●●

●

●

●

●
●●

●

● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●●●

●

●●
●

●

●

●● ●
●

●●●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●●●●

●

●●●

●

●

●

●
●

●

●

●●●●● ●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●●●

●●
●
●●●●●●

●

●

●

●
●

●●
●

● ●●●
●

●

●● ●●●● ●
●

●

●

●
●

●

●●

●
●

●
●●●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●●●●

●
●

●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●●
●

●
●
●
●

●

●●●●
●●●●●●●

●
●

●
●●

●●

●

●●

●
●●

●●●
●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●
●●●●●●

●

●●
●●●●

●
●

●

Figure 11: chroGPSgenes map with clusters at between-cluster distance of 0.2, and
cluster density contours at 50 and 95 percent. Left: Unmerged. Right: Merged.

We plot the cluster contours before and after merging (Figure 11). The merging
step combined clusters from the central dense region of the map. These clusters had
a low cluster-specific CCR, as shown in Figure 10. After merging all cluster-specific
CCR values were roughly ≥ 0.9. The code required to produce Figure 11 is provided
below.

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.cex=1.5,point.col='grey')
> for (p in c(0.95, 0.50)) plot(clus2,type='contours',k=max(cutree(h,h=0.2)),
+ lwd=5,probContour=p,drawlabels=TRUE,labcex=2,font=2)

> par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
> plot(mds1,point.cex=1.5,point.col='grey')
> for (p in c(0.95, 0.50)) plot(clus3,type='contours',k=max(cutree(h,h=0.2)),
+ lwd=5,probContour=p)

And as we did before, we can have a look at per-cluster CCR values before and
after cluster merging (12)

> plot(clus2,type='stats',k=max(cutree(h,h=0.2)),ylim=c(0,1),lwd=2,
+ ylab='CCR',xlab='Cluster ID')

> plot(clus3,type='stats',k=max(cutree(h,h=0.2)),ylim=c(0,1),lwd=2,
+ ylab='CCR',xlab='Cluster ID')

3.9 Studying the epigenetic profile of selected clusters

A classical way of analyzing a group epigenes is to look at the distribution of their
epigenetic marks, that is, looking at their epigenetic profile. A quick look into a
heatmap-like plot produced with the heatmap.2 function from the gplots package

20

● ●
● ●

●

●
●

● ●

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster ID

C
C

R

●

●

●
●

●

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster ID

C
C

R

Figure 12: Per-cluster (dots and continuous line) and global (dashed line) mis-
classification rate for the clusters shown in Figure 11. Red dashed line indicates an
arbitrary threshold of 0.7 CCR. Left: Unmerged. Right: Merged

can highlight specific enrichments or depletions of certain epigenetic factors in a
given cluster. As expected, this matches the distribution of epigenetic factors seen
in Figure 11.

> p1 <- profileClusters(s2.tab, uniqueCount = TRUE, clus=clus3, i=max(cutree(h,h=0.2)),

+ log2 = TRUE, plt = FALSE, minpoints=0)

> # Requires gplots library

> library(gplots)

> heatmap.2(p1[,1:20],trace='none',col=bluered(100),margins=c(10,12),symbreaks=TRUE,
+ Rowv=FALSE,Colv=FALSE,dendrogram='none')

3.10 Beyond R: exporting chroGPS maps to Cytoscape

No doubt R is a wonderful environment, but it has its limitations and it may
not be the most direct software to use for biologists. Having that in mind, we
developed a function for exporting any of the MDS graphics from our chroGPS
maps as an XGMML format network for the widely used Cytoscape software http:

//www.cytoscape.org, [Shannon et al., 2003]. Network nodes are identified by their
factor or epigene name, so that importing external information (i.e. expression val-
ues) or expanding the original chroGPS object with for instance external regulation
networks, Gene Ontology enrichments, etc, becomes natural for Cytoscape users.
Even if no edges are returned, the exported network keeps the relative distribution
of elements as seen in chroGPS, in order to keep the distances between the original
elements intact. For three-dimensional maps Cytoscape 3D Renderer is required.

> # For instance if mds1 contains a valid chroGPS-factors map.

> # gps2xgmml(mds1, fname='chroGPS_factors.xgmml', fontSize=4,

21

http://www.cytoscape.org
http://www.cytoscape.org

A
S

H
1.

Q
41

77
.S

2
B

E
A

F.
70

.S
2

B
E

A
F.

H
B

.S
2

C
hr

o.
C

hr
iz

.B
R

.S
2

C
hr

o.
C

hr
iz

.W
R

.S
2

C
P

19
0.

H
B

.S
2

C
P

19
0.

V
C

.S
2

C
T

C
F.

N
_S

2.
C

hI
P

.c
hi

p
C

T
C

F.
V

C
.S

2
C

T
C

F.
S

2
dM

i.2
_Q

26
26

.S
2

dR
IN

G
.Q

32
00

.S
2

dS
F

M
B

T.
Q

26
42

.S
2

E
Z

.Q
34

21
.S

2
E

z.
S

2
G

A
F.

S
2

H
2B

.u
bi

q.
.N

R
O

3.
.S

2
H

2B
K

5a
c.

S
2

H
3K

18
ac

.S
2

H
3K

23
ac

.S
2

C6

C2

C200.C156.C148.C245.C201

C42

C1

−4 0 2 4

Value

0
4

8

Color Key
and Histogram

C
ou

nt

Figure 13: chroGPSgenes profile heatmap of the 9 unmerged clusters presented at
Figure 11 after unsupervised merging of overlapping clusters (showing 20 first fac-
tors for visualization purposes). Merged clusters get concatenated names from the
original clusters.

22

> # col=s2names$Color, cex=8)

> # And use Cytoscape -> File -> Import -> Network (Multiple File Types)

> # to load the generated .xgmml file

And this is everything, hope you enjoy using chroGPS as much as we did devel-
oping it !

References

J. Font-Burgada, O. Reina, D. Rossell, and F. Azorin. chrogps, a global chromatin
positioning system for the functional analysis and visualization of the epigenome.
Submitted, 2013.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res., 13(11):2498–2504,
Nov 2003.

W. N. Venables and B. D. Ripley. Modern applied statistics with S. Springer, 4th
edition, August 2002. ISBN 0387954570.

L.J. Zhu, C. Gazin, N.D. Lawson, H. Pagès, S.M. Lin, D.S. Lapointe, and M.R.
Green. ChIPpeakAnno: a bioconductor package to annotate chIP-seq and chIP-
chip data. BMC Bioinformatics, 11:237, 2010.

23

Figure 14: chroGPSfactors network exported and visualized in Cytoscape. Top: 2D.
Bottom: 3D.

24

	Introduction
	chroGPSfactors
	Building chroGPSfactors maps
	Integrating data sources: technical background

	ChroGPSgenes
	Building chroGPSgenes maps
	Genome-wide chroGPSgenes maps
	Annotating chroGPSgenes maps with quantitative information
	Annotating chroGPSgenes maps: clustering
	Cluster visualization with density contours
	Assessing cluster separation in chroGPSgenes maps
	Locating genes and factors on chroGPSgenes maps
	Merging overlapping clusters
	Studying the epigenetic profile of selected clusters
	Beyond R: exporting chroGPS maps to Cytoscape

