
Introduction to the xps Package: Overview

Christian Stratowa

April, 2011

Contents

1 Introduction 1

2 Why ROOT? 2

3 Getting Started 2
3.1 Reading CEL file information . 2
3.2 Accessing raw data . 4

4 Converting raw data to expression measures 8
4.1 Calculating expression levels . 9
4.2 Calculating detection calls . 10
4.3 Plotting results . 11

5 Filtering expression measures 16
5.1 Applying non–specific filters: PreFilter . 17
5.2 Applying specific filters for two groups: UniFilter . 18

A Appendices 21
A.1 Importing chip definition and annotation files . 21
A.2 Additional examples . 22
A.3 Using Biobase class ExpressionSet . 22
A.4 ROOT graphics . 22
A.5 Using methods FARMS and DFW . 26

1 Introduction

Affymetrix GeneChip oligonucleotide arrays use several probes to assay each targeted transcript. Spe-
cialized algorithms have been developed to summarize low-level probe set intensities to get one ex-
pression measure for each transcript. Some of these methods, such as MAS 4.0’s AvDiff (Affymetrix,
1999), MAS5’s signal (Affymetrix, 2001) or RMA (Irizarry et al., 2003), are implemented in package
affy (Gautier et al., 2004). Further methods, such as FARMS (Hochreiter et al., 2006) or DFW (Chen
et al., 2007) are custom methods that can be registered for use with package affy.

Advantages in technology allow Affymetrix to supply whole-genome expression arrays such as the
new GeneChip Exon array systems (Exon 1.0 ST) and Gene array systems (Gene 1.0 ST). The amount
of data created with the new exon arrays poses a great challenge, since R stores all objects in memory.

Package xps - eXpression Profiling System - is designed to analyze Affymetrix GeneChip expression
and exon arrays on computers with limited amounts of memory (1 GB RAM). To achieve this goal,

1

xps takes advantage of ROOT, a framework especially developed to handle and analyse large amounts of
data in a memory efficient way.
Important installation note: Package xps is based on two powerful frameworks, namely R and ROOT.
It is thus absolutely essential to install the ROOT framework before xps can be built and installed. For
instructions how to install ROOT see the README file provided with package xps.

2 Why ROOT?

ROOT (http://root.cern.ch) is an object-oriented framework that has been developed at CERN for
distributed data warehousing and data mining of particle data in the petabyte range, such as the data
created with the new LHC collider. Data are stored as sets of objects in machine-independent files, and
specialized storage methods are used to get direct access to separate attributes of selected data objects.
For more information see the ROOT User Guide (The ROOT team (2009)).

Taking advantage of these features, package xps stores all data in portable ROOT files. Data describing
microarray layout, probe information and metadata for genes are stored as ROOT Trees in scheme files,
accessible from R as scheme objects. Raw probe intensities, i.e. CEL-files for each project are stored as
ROOT Trees in data files, accessible from R as data objects. All analysis is done independent of R such
avoiding inherent memory limitations.

Note: Absolutely no knowledge of ROOT is required to use package xps. However, the interested
user could use package xps independent of R by writing ROOT macros, examples of which can be found
in file ”macro4XPS.C”, located in subdirectory examples.

3 Getting Started

First you need to load the xps package.

R> library(xps)

Welcome to xps version 1.12.1

an R wrapper for XPS - eXpression Profiling System

(c) Copyright 2001-2011 by Christian Stratowa

As an initial step, which needs to be done only once, you must import Affymetrix chip definition
files, probe files and annotation files for all arrays that you are using, into ROOT scheme files. This is
described in Appendix A1, here we use the ROOT scheme file supplied with the package.

Throughout this tutorial we will use a set of four CEL files supplied with the package. The necessary
ROOT scheme file SchemeTest3.root for GeneChip Test3.CDF is also supplied as well as the ROOT data
file DataTest3 cel.root . These files need to be loaded for every new R-session, unless the session has
been saved.

Note: Please see Appendix A2 for many additional examples on how to use xps.

3.1 Reading CEL file information

The CEL files can be located in a common directory or in different directories, see ?import.data how
to import CEL files from different directories. CEL files will be imported into a ROOT data file as ROOT

Trees. Once the ROOT data file is created, the CEL files are no longer needed, since subsequent R-sessions
need only load the ROOT data file. However, it is possible to load only a subset of CEL files, and it is
also possible to save new CEL files in the same ROOT data file at a later time. In this demo we will show
how to achieve this.

First we load the xps package.

2

http://root.cern.ch

> library(xps)

For this demonstration CEL files are located in a common directory, in our case in:

> celdir <- file.path(.path.package("xps"), "raw")

Since our CEL files were created for GeneChip Test3.CDF, we need to load the corresponding ROOT

scheme file first:

> scheme.test3 <- root.scheme(file.path(.path.package("xps"), "schemes",

+ "SchemeTest3.root"))

Now we can import the CEL files, in our case a subset first:

> celfiles <- c("TestA1.CEL", "TestA2.CEL")

> data.test3 <- import.data(scheme.test3, "tmpdt_DataTest3", celdir = celdir,

+ celfiles = celfiles, verbose = FALSE)

To see, which CEL files were imported as ROOT Trees, we can do:

> unlist(treeNames(data.test3))

[1] "TestA1.cel" "TestA2.cel"

Now we can import additional CEL files:

> celfiles <- c("TestB1.CEL", "TestB2.CEL")

> data.test3 <- addData(data.test3, celdir = celdir, celfiles = celfiles,

+ verbose = FALSE)

Instead of getting the imported tree names from the created instance data.test3 of S4 class Data-
TreeSet , we can also get the tree names directly from the ROOT data file:

> getTreeNames(rootFile(data.test3))

[1] "TestA1.cel" "TestA2.cel" "TestB1.cel" "TestB2.cel"

Now we have all CEL files imported as ROOT Trees. In later R-sessions we only need to load the
corresponding ROOT data file using function root.data. In this tutorial we will not use the file just
created but the ROOT data file DataTest3 cel.root .

Note 1: It is also possible to import ‘phenotypic-data’ describing samples and further project–
relevant data for the experiment, see S4 class ProjectInfo.

Note 2: Since ROOT data files contain the raw data, it is recommended to create them in a common
system directory, e.g. ’rootdata’, which is accessible to other users, too.

Note 3: In order to distinguish ROOT data files containing the raw data from other ROOT files,
extension ‘ cel’ is automatically added to the file name. Thus creating a raw data file with name
DataTest3 will result in a ROOT file with name DataTest3 cel.root . Extension ‘root’ is always added to
each ROOT file.

Note 4: Usually, ROOT data files are kept permanently. Thus it is not possible to accidently overwrite
a ROOT data file with another file of the same name; you will get an error message. If you want to create
a temporary ROOT data file, which can be overwritten, the name must start with ‘tmp ’. However, in the
example above we needed to use ‘tmpdt ’ otherwise R CMD check would produce an error on Windows.
Please note that ‘tmpdt ’ will not work with function import.data for the reason described in Note 3
above.

Note 5: It is highly recommended to keep the default setting verbose=TRUE, especially when
working with exon arrays. On Windows you will see the verbose messages only when starting R from
the command line, i.e. using RTerm.

3

3.2 Accessing raw data

Currently, the data from the imported CEL files are saved as ROOT Trees in the ROOT data file, however,
they are not accessible from within R. The corresponding slot data of instance data.test3 of S4 class
DataTreeSet , a data.frame, is empty. This setting allows to import e.g. an (almost) unlimited number
of CEL files from GeneChip Exon arrays on computers with 1GB RAM only.

When we try to access the raw data, we get:

> tmp <- intensity(data.test3)

> head(tmp)

data frame with 0 columns and 0 rows

Thus, we need to attach the raw data first to data.test3 :

> data.test3 <- attachInten(data.test3)

Now we get:

> tmp <- intensity(data.test3)

> head(tmp)

X Y TestA1.cel_MEAN TestA2.cel_MEAN TestB1.cel_MEAN TestB2.cel_MEAN

1 0 0 1319.1 1343.7 765.0 653.9

2 1 0 21304.9 21281.2 9742.5 18531.1

3 2 0 1009.9 1084.7 1162.6 466.8

4 3 0 21204.7 21233.9 6334.8 18896.0

5 4 0 960.7 1010.7 164.2 990.1

6 5 0 1078.0 1103.7 380.6 770.4

Alternatively, it is also possible to attach only a subset to the current object data.test3 , or to a copy
subdata.test3 :

> subdata.test3 <- attachInten(data.test3, c("TestB1.cel", "TestA2"))

> tmp <- intensity(subdata.test3)

> head(tmp)

X Y TestB1.cel_MEAN TestA2.cel_MEAN

1 0 0 765.0 1343.7

2 1 0 9742.5 21281.2

3 2 0 1162.6 1084.7

4 3 0 6334.8 21233.9

5 4 0 164.2 1010.7

6 5 0 380.6 1103.7

When we no longer need the raw data, we can remove them from data.test3 , thus avoiding memory
consumption of R:

> data.test3 <- removeInten(data.test3)

> tmp <- intensity(data.test3)

> head(tmp)

data frame with 0 columns and 0 rows

4

Now we want create some plots with the raw data. For this purpose we need not only attach the raw
data, as shown above, but also slot mask of scheme.test3 , since slot mask contains the information which
oligos on the array are PM, MM, or control oligos, respectivly. See Appendix A1 for an explanation
and how to avoid this step.

> data.test3 <- attachMask(data.test3)

> data.test3 <- attachInten(data.test3)

Note: We have applied method attachMask to data.test3 and not to scheme.test3 , since data.test3
contains its own copy of scheme.test3 .

First, we create a density plot:

> hist(data.test3)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log intensity

de
ns

ity

5

The corresponding boxplots are:

> boxplot(data.test3)

Te
st

A
1.

ce
l_

M
E

A
N

Te
st

A
2.

ce
l_

M
E

A
N

Te
st

B
1.

ce
l_

M
E

A
N

Te
st

B
2.

ce
l_

M
E

A
N

2

4

6

8

10

12

14

16

6

It is also possible to create an image for e.g. sample TestA1:

> image(data.test3, names = "TestA1.cel")

TestA1.cel

7

Finally we include a PM-MM-plot of the data:

> pmplot(data.test3)

Te
st

A
1

Te
st

A
2

Te
st

B
1

Te
st

B
2

PM
MM

m
ea

n
in

te
ns

iti
es

0

500

1000

1500

2000

2500

3000

After we are done, we remove the data from data.test3 to free R memory:

> data.test3 <- removeInten(data.test3)

> data.test3 <- removeMask(data.test3)

This step is not necessary for small datasets or if the computer has sufficient RAM.
Note: From the description above it is evident, that it is not possible to plot exon array data using

e.g. functions hist or image, respectively, on computers with 1GB RAM only. To allow plotting under
low memory conditions, package xps supports ROOT graphics, as described in Appendix A4.

4 Converting raw data to expression measures

When we start a new R-session, it is necessary to load the ROOT scheme and ROOT data files first:

> library(xps)

> scheme.test3 <- root.scheme(file.path(.path.package("xps"), "schemes",

8

+ "SchemeTest3.root"))

> data.test3 <- root.data(scheme.test3, file.path(.path.package("xps"),

+ "rootdata", "DataTest3_cel.root"))

This step is not necessary when objects scheme.test3 and data.test3 are already saved in an R-session.
Converting raw data to expression measures and computing detection calls is fairly simple. It is not

necessary to attach any data or mask data.frames, since all computations are done independently from
R.

4.1 Calculating expression levels

Let us first preprocess the raw data using method ‘RMA’ to compute expression levels, and store the
results as ROOT Trees in ROOT file tmpdt Test3RMA.root :

> data.rma <- rma(data.test3, "tmpdt_Test3RMA", verbose = FALSE)

Note: In this example and the following examples we suppress the usual output. Furthermore,
once again we use ‘tmpdt ’, which adds date and time to the tmp-file, otherwise R CMD check would
produce an error on Windows. Usually, you want to create a permanent file, however, if you want to
create a temporary file it is recommended to use ‘tmp ’ as temporary file which will be overwritten.

Then we preprocess the raw data using method ‘MAS5’ to compute expression levels, and store the
results in ROOT file tmpdt Test3MAS5.root :

> data.mas5 <- mas5(data.test3, "tmpdt_Test3MAS5", normalize = TRUE,

+ sc = 500, update = TRUE, verbose = FALSE)

Now we want to compare the results by plotting the expression levels for the first sample. For this
purpose we need to extract the expression levels from the resulting S4 classes ExprTreeSet as data.frames
first:

> expr.rma <- validData(data.rma)

> expr.mas5 <- validData(data.mas5)

Now we can plot the results for the first sample:

> plot(expr.rma[, 1], expr.mas5[, 1], log = "xy", xlim = c(1, 20000),

+ ylim = c(1, 20000))

9

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●
●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

expr.rma[, 1]

ex
pr

.m
as

5[
, 1

]

Note: For both methods, ‘RMA’ and ‘MAS5’, true expression levels are extracted, which is in
contrast to other packages which extract the log2 values for ‘RMA’.

4.2 Calculating detection calls

Let us now compute the MAS5 detection calls:

> call.mas5 <- mas5.call(data.test3, "tmpdt_Test3Call", verbose = FALSE)

Alternatively, let us compute the DABG (detection above background) calls:

> call.dabg <- dabg.call(data.test3, "tmpdt_Test3DABG", verbose = FALSE)

Note: YES, in principle it is indeed possible to compute the DABG call not only for exon arrays but for
expression arrays, too. However, computation may take a long time, e.g. on a computer with 2.3GHz
Intel Core 2 Duo processor and 2GB RAM, computing DABG calls for HG-U133 Plus 2 arrays will
take about 45 min/array.

Both, detection call and detection p-value can be extracted as data.frame:

> pres.mas5 <- presCall(call.mas5)

> head(pres.mas5)

10

UNIT_ID UnitName TestA1.dc5_CALL TestA2.dc5_CALL TestB1.dc5_CALL

1 0 Pae_16SrRNA_s_at A A A

2 1 Pae_23SrRNA_s_at A A P

3 2 PA1178_oprH_at A A A

4 3 PA1816_dnaQ_at A A A

5 4 PA3183_zwf_at A A A

6 5 PA3640_dnaE_at A A A

TestB2.dc5_CALL

1 A

2 A

3 A

4 A

5 A

6 A

> pval.mas5 <- pvalData(call.mas5)

> head(pval.mas5)

UNIT_ID UnitName TestA1.dc5_PVALUE TestA2.dc5_PVALUE

1 0 Pae_16SrRNA_s_at 0.837065 0.660442

2 1 Pae_23SrRNA_s_at 0.458816 0.418069

3 2 PA1178_oprH_at 0.975070 0.979305

4 3 PA1816_dnaQ_at 0.880342 0.805907

5 4 PA3183_zwf_at 0.863952 0.863952

6 5 PA3640_dnaE_at 0.950260 0.979305

TestB1.dc5_PVALUE TestB2.dc5_PVALUE

1 0.56163900 0.872355

2 0.00564281 0.749276

3 0.62315800 0.291460

4 0.70854000 0.997629

5 0.78361600 0.975070

6 0.84608900 0.979305

4.3 Plotting results

Now we want to create some plots for the expression levels. In contrast to the raw data we do not
need to attach data, since expression levels and detection calls are already stored in the R objects, e.g.
in data.rma, an instance of S4 class ExprTreeSet , or in call.mas5 , an instance of S4 class CallTreeSet ,
respectively.

11

First, we create a density plot:

> hist(data.rma)

6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

log intensity

de
ns

ity

12

The corresponding boxplots are:

> boxplot(data.rma)

Te
st

A
1.

m
dp

_L
E

V
E

L

Te
st

A
2.

m
dp

_L
E

V
E

L

Te
st

B
1.

m
dp

_L
E

V
E

L

Te
st

B
2.

m
dp

_L
E

V
E

L
6

8

10

12

14

13

It is also possible to create M vs A plots for one or more samples:

> mvaplot(data.rma, pch = 20, ylim = c(-2, 2), names = "TestB1.mdp_LEVEL")

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●
●●

●

●
●

●

●

●

●
●●●
●

●

●

●●

●

●●

●

●●●
●

●

●

●

●
● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

● ●●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●● ●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

8 10 12 14
−2

−1

0

1

2

TestB1.mdp_LEVEL

A

M

14

Finally we create present call plots:

> callplot(call.mas5)

Te
st

A
1

Te
st

A
2

Te
st

B
1

Te
st

B
2

P
M
A

de
te

ct
io

n
ca

ll
[%

]

0

20

40

60

80

100

Since the ROOT expression files contain additional ROOT Trees, e.g. trees containing the computed
background intensities, let us create an image showing the distribution of the background intensities on
an array for MAS5.

First, we need to know the tree names stored in data.mas5

> getTreeNames(rootFile(data.mas5))

[1] "TestA1.wbg" "TestA1.int" "TestA2.wbg" "TestA2.int" "TestB1.wbg"

[6] "TestB1.int" "TestB2.wbg" "TestB2.int" "TestA1.tbw" "TestA2.tbw"

[11] "TestB1.tbw" "TestB2.tbw" "TestA1.rnk" "TestA1.tmn" "TestA2.rnk"

[16] "TestA2.tmn" "TestB1.rnk" "TestB1.tmn" "TestB2.rnk" "TestB2.tmn"

We decide to use tree ‘TestA2.wbg’ (extension ‘wbg’ stands for ‘weighted background’, see ?validTreetype).
In this case we need to export the background intensities directly from ROOT file tmp Test3MAS5.root .

We can do this in the following way:

> bgrd <- export.root(rootFile(data.mas5), schemeFile(data.mas5),

+ "PreprocesSet", "TestA2", "wbg", "fBg", "BgrdROOTOut.txt",

+ as.dataframe = TRUE, verbose = FALSE)

15

Then we need to convert background intensities to an object of type matrix:

> wbg <- matrix(bgrd[, "BGRD"], ncol = ncols(schemeSet(data.mas5)),

+ nrow = nrows(schemeSet(data.mas5)))

Finally, we can draw the image:

> image(log2(wbg))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 Filtering expression measures

The xps package can also be used to filter (select) genes according to a variety of different filtering
mechanisms, similar to Bioconductor package genefilter.

It is important to note that filters can be split into the non–specific filters and the specific filters.
Usually, non–specific filters are used to reduce the number of genes remaining for further analysis e.g.
by reducing the noise in the dataset. In contrast, specific means that we are filtering with reference
to a particular covariate. For example we want to select genes that are differentially expressed in two
groups. Here we use the term ‘prefilter’ for non–specific filters and the term ‘unifilter’ for specific filters
applied to two groups.

16

5.1 Applying non–specific filters: PreFilter

Applying non–specific filters is a simple two-step process: First, select the filters of interest using
constructor PreFilter. Second, apply the resulting class PreFilter to an instance of class ExprTreeSet
using function prefilter.

Currently it is possible to select up to ten non–specific filters which are defined in S4 class PreFilter .
For this example let us initialize the following three non–specific filters:

1. madFilter: A ‘median absolute deviation’ filter, which selects only genes where mad across all
samples is at least 0.5, i.e. mad >= 0.5.

2. lowFilter: A ‘lower threshold’ filter to select genes where the trimmed mean of the log2–
expression levels is above 7.0 (with trim = 0.02).

3. highFilter: An ‘upper threshold’ filter to select genes that are log2–expressed below 10.5 in at
least 80 percent of the samples.

Furthermore, a gene should be selected for further analysis only if it satisfies at least two of the three
filters.

Initialization of the filters is done using the constructor PreFilter:

> prefltr <- PreFilter(mad = c(0.5), lothreshold = c(7, 0.02, "mean"),

+ hithreshold = c(10.5, 80, "percent"))

> str(prefltr)

This filter is then applied to expression data data.rma created earlier, using function prefilter

with parameter minfilters=2:

> rma.pfr <- prefilter(data.rma, "tmpdt_Test3Prefilter", getwd(),

+ filter = prefltr, minfilters = 2, verbose = FALSE)

The resulting filter mask can be extracted as data.frame:

> tmp <- validData(rma.pfr)

> head(tmp)

UNIT_ID FLAG

Pae_16SrRNA_s_at 0 1

Pae_23SrRNA_s_at 1 0

PA1178_oprH_at 2 0

PA1816_dnaQ_at 3 1

PA3183_zwf_at 4 1

PA3640_dnaE_at 5 0

> dim(tmp[tmp[, "FLAG"] == 1,])

[1] 181 2

The data show that 181 genes of the 345 genes on the Test3 GeneChip are selected for further
analysis.

17

5.2 Applying specific filters for two groups: UniFilter

Applying univariate filters is also a simple two-step process: First, select the filters of interest using
constructor UniFilter. Second, apply the resulting class UniFilter to an instance of class ExprTreeSet
using function unifilter.

Currently it is possible to select three univariate filters which are defined in S4 class UniFilter . For
this example let us initialize the following two filters:

1. fcFilter: A ‘fold–change’ filter, which selects only genes with an absolute fold–change of at least
1.3, i.e. abs(mean(GrpB)/mean(GrpA)) >= 1.3.

2. unitestFilter: A ‘unitest’ filter to select genes where the p–value of the applied unitest, i.e. the
t.test is less than 0.1 (pval <= 0.1).

Only genes satisfying both filters are considered to be differentially expressed.
Note: If you want to change the default settings for t.test and/or compute an adjusted p–value

for multiple comparisons you need to initialize method uniTest, too.

Initialization of the filters is done using the constructor UniFilter:

> unifltr <- UniFilter(foldchange = c(1.3, "both"), unifilter = c(0.1,

+ "pval"))

This filter is then applied to expression data data.rma using function unifilter where parameter
group allocates each sample to one of two groups. Furthermore, since we want to use only the pre–
selected genes from prefilter we need to set xps.fltr=rma.pfr:

> rma.ufr <- unifilter(data.rma, "tmpdt_Test3Unifilter", getwd(),

+ unifltr, group = c("GrpA", "GrpA", "GrpB", "GrpB"), xps.fltr = rma.pfr,

+ verbose = FALSE)

The resulting data can be extracted as data.frame:

> tmp <- validData(rma.ufr)

> tmp

UNIT_ID Statistics Mean1 Mean2 StandardError

AFFX-Ce_Gapdh_5_s_at 40 7.06687 298.668 209.920 0.0719846

rrlG_b2589_s_at 186 -10.74160 122.945 169.814 0.0433769

37189_at 214 -8.24096 241.766 369.666 0.0743373

AFFX-18SRNAMur/X00686_3_at 243 -7.66081 452.422 666.802 0.0730458

AFFX-hum_alu_at 277 -63.55890 674.325 5368.190 0.0470889

AFFX-HUMISGF3A/M97935_MA_at 283 -15.41420 341.779 458.275 0.0274521

AFFX-HUMRGE/M10098_5_at 286 -26.88740 149.584 199.014 0.0153200

AFFX-HUMRGE/M10098_M_at 287 -17.77530 125.175 176.651 0.0279579

AFFX-MurFAS_at 298 -7.14193 163.431 226.340 0.0657826

DegreeOfFreedom P-Value P-Adjusted FoldChange

AFFX-Ce_Gapdh_5_s_at 1.19543 0.06399260 0.06399260 0.702853

rrlG_b2589_s_at 1.49189 0.02160840 0.02160840 1.381220

37189_at 1.00864 0.07560790 0.07560790 1.529020

AFFX-18SRNAMur/X00686_3_at 1.05823 0.07425470 0.07425470 1.473850

AFFX-hum_alu_at 1.06781 0.00766898 0.00766898 7.960830

AFFX-HUMISGF3A/M97935_MA_at 1.61801 0.00952405 0.00952405 1.340850

AFFX-HUMRGE/M10098_5_at 1.00504 0.02329990 0.02329990 1.330450

AFFX-HUMRGE/M10098_M_at 1.04887 0.03139930 0.03139930 1.411240

AFFX-MurFAS_at 1.96059 0.02008720 0.02008720 1.384930

18

The data show that only 9 genes of the pre–selected 181 genes are considered to be differentially
expressed.

Note: If you want to extract all data as data.frame as well as the resulting filter mask you can do:

> msk <- validFilter(rma.ufr)

> tmp <- validData(rma.ufr, which = "UnitName")

> tmp <- cbind(tmp, msk)

However, the recommended way to extract all data together with the filter mask as well as the gene
annotation is:

> tmp <- export.filter(rma.ufr, treetype = "stt", varlist = "fUnitName:fName:fSymbol:fc:pval:flag",

+ as.dataframe = TRUE, verbose = FALSE)

> head(tmp)

UNIT_ID UnitName GeneName GeneSymbol

1 0 Pae_16SrRNA_s_at <NA> <NA>

2 3 PA1816_dnaQ_at DNA polymerase III, epsilon chain dnaQ

3 4 PA3183_zwf_at glucose-6-phosphate 1-dehydrogenase zwf

4 6 PA4407_ftsZ_at cell division protein FtsZ ftsZ

5 7 Pae_16SrRNA_s_st <NA> <NA>

6 8 Pae_23SrRNA_s_st <NA> <NA>

P-Value FoldChange Flag

1 0.7583680 0.946678 0

2 0.5312780 0.882740 0

3 0.1065430 0.589877 0

4 0.0857105 0.912617 0

5 0.6743540 0.878799 0

6 0.7226290 0.912209 0

Now all 181 pre–selected genes are extracted as data.frame together with the corresponding anno-
tation and the filter mask.

It is also possible to create a fold-change vs p-value plot, called volcanoplot. Setting the parameter
labels="fSymbol" allows us to draw the corresponding gene symbols, if known:

> volcanoplot(rma.ufr, labels = "fSymbol")

19

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

Log2(Fold−Change)

−
Lo

g1
0(

P
−

V
al

ue
)

dnaQ

zwf
ftsZ

oprH

dnaQ
zwfdnaE

ftsZ

ACT7 RPL37A

RPL41

ILF2

TAGLN2
CAPN2

ATP5O

PMM1

MLF2

PPP1CC

CASC3
M−RIP

TXNRD1
PSMD7

EIF2B2

HLA−A

Vil2

Ppp1cc ACTB

GAPDH

GAPDH

STAT1STAT1

TFRC

Fas

Pcx

Pcx

Pcx

Pcx

Tfrc

Tfrc

Hk1

Hk1

20

A Appendices

A.1 Importing chip definition and annotation files

In contrast to other packages, which rely on the Bioconductor method for creating cdf environments, we
need to create ROOT scheme files directly from the Affymetrix source files, which need to be downloaded
first from the Affymetrix web site. However, once created, it is in principle possible to distribute the
ROOT scheme files, too.

Here we will demonstrate, how to create a ROOT scheme file for Affymetrix GeneChip Test3.CDF. We
assume that the following files were downloaded, unzipped, and saved in subdirectories libraryfiles

and Annotation, respectively:

• GeneChip chip definition file: Test3.CDF

• Probe sequence file: Test3 probe.tab

• Probeset annotation file: Test3.na28.annot.csv

In a new R-session we load our library and define the directories, where the library files and the
annotation files are saved, respectively, and the directory, where the ROOT scheme files should be saved:

> library(xps)

> libdir <- "/path/to/Affy/libraryfiles"

> anndir <- "/path/to/Affy/Annotation"

> scmdir <- "/path/to/CRAN/Workspaces/Schemes"

Now we can create a ROOT scheme file:

> scheme.test3 <- import.expr.scheme("Scheme_Test3_na28", filedir = scmdir,

+ paste(libdir, "Test3.CDF", sep = "/"), paste(libdir, "Test3_probe.tab",

+ sep = "/"), paste(anndir, "Test3.na28.annot.csv", sep = "/"))

The R object scheme.test3 is not needed lateron, since in every new R-session the ROOT scheme file
need to be imported first, using:

> scmdir <- "/path/to/CRAN/Workspaces/Schemes"

> scheme.test3 <- root.scheme(paste(scmdir, "SchemeTest3.root",

+ sep = "/"))

Package xps includes a file ”script4schemes.R” which contains code to import some of the main CDF
and annotation files, which can be copied to an R-session, including code to create ROOT scheme files for
the currently available Exon arrays and Gene arrays.

Note 1: Since ROOT scheme files need to be created only once, it is recommended to save them in
a common system directory, e.g. ’Schemes’, which is accessible to other users, too.

Note 2: As mentioned earlier, slot mask of scheme.test3 needs to be attached to instances of S4
class DataTreeSet before accessing raw data, since slot mask contains the information which oligos on
the array are PM, MM, or control oligos, respectivly. If you want to avoid this step you can create
instances of SchemeTreeSet , which contain this information already, by setting parameter add.mask of
function import.expr.scheme to add.mask=TRUE, e.g.:

> scheme.test3 <- import.expr.scheme("Scheme_Test3_na28", ...,

+ add.mask = TRUE)

Note 3: Please note that for the new GeneChip Exon array systems and Gene array systems
Affymetrix no longer supports CDF-files, but uses the new CLF-files and PGF-files instead. For this
reason package xps also uses CLF-, PGF-files to create the root scheme files, and does not use the
inofficial CDF-files. See the help files ?import.exon.scheme and ?import.genome.scheme for more
information.

21

A.2 Additional examples

Additional examples how to use package xps can be found in file ”script4xps.R”, located in subdirectory
’examples’. Most of these examples are easily adaptable to users need and can be copied with no or
only minor modifications. Furthermore, a second file, ”script4exon.R”, shows how to use xps with the
novel Affymetrix Gene and Exon arrays. Both files use the Affymetrix ”Human Tissue Datasets” for
arrays HG-U133 Plus 2, HuEx-1 0-st-v2 and HuGene-1 0-st-v1, respectively.

A.3 Using Biobase class ExpressionSet

Some users may prefer to use S4 class ExpressionSet , defined in the Biobase package of Bioconductor,
for further analysis of expression measures.

Package Biobase contains a vignette ”ExpressionSetIntroduction.pdf”, which describes how to build
an ExpressionSet from scratch. Here we create a minimal ExpressionSet containing the expression
measures determined using RMA:

First, we need to load library Biobase, then extract the expression levels from instance data.rma of
class ExprTreeSet , convert the data.frame to a matrix, and finally create an instance of class Expres-
sionSet :

> library(Biobase)

> expr.rma <- validData(data.rma)

> minimalSet <- new("ExpressionSet", exprs = as.matrix(expr.rma))

As described in vignette ”ExpressionSetIntroduction.pdf”, we can now access the data elements. For
this example we create a new ExpressionSet consisting of the 5 features and the first 3 samples:

> vv <- minimalSet[1:5, 1:3]

> featureNames(vv)

> sampleNames(vv)

> exprs(vv)

This class ExpressionSet can now be used from within other Bioconductor packages.

A.4 ROOT graphics

As noted earlier, package xps allows to analyze Exon arrays on computers with only 1GB RAM. However,
in this case it is not possible to use R-based plots such as image, hist, or boxplot, respectively. For this
purpose xps takes advantage of the ROOT graphics capabilities, which do not suffer from such memory
limitations.

In the following we will demonstrate some of the ROOT graphics capabilities using the 33 exon
array data of all 11 tissues from the Affymetrix Exon Array Data Set ”Tissue Mixture” (see file
”script4exon.R”).

Let us first create an image using function root.image:

> root.image(data.exon, treename = "BreastA.cel", zlim = c(3, 11),

+ w = 400, h = 400)

22

The left side of the figure shows the image created, while the right side shows the figure after
zooming-in (see ?root.image how to save the image and how to zoom-in).

Now let us create density-plots for the raw intensities of all 33 exon arrays, as well as for the
RMA-normalized expression levels:

> root.density(data.exon, "*", w = 400, h = 400)

> root.density(data.x.rma, "*", w = 400, h = 400)

In addition we create profile plots for the RMA-normalized expression levels:

> root.profile(data.x.rma, w = 640, h = 400)

23

As you see, the profile plots shows both a histogram and a boxplot for each sample.

It is also possible to draw scatter-plots for the raw intensities between any two arrays, as well as
between two RMA-normalized expression levels:

> root.graph2D(data.exon, "BreastA.cel", "BreastB.cel")

> root.graph2D(data.x.rma, "BreastA.mdp", "BreastB.mdp")

The left scatter-plot compares the raw intensities of two breast tissue replicas for all probes on the
exon array, while the right scatter-plot compares the respective normalized expression levels.

24

Besides using scatter-plots it is also possible to plot the same data as 2D-histograms:

> root.hist2D(data.exon, "BreastA.cel", "BreastB.cel", option = "COLZ")

> root.hist2D(data.x.rma, "BreastA.mdp", "BreastB.mdp", option = "COLZ")

> root.hist2D(data.x.rma, "BreastA.mdp", "BreastB.mdp", option = "SURF2")

Here we show two different ways to plot the 2D-histogram for the normalized expression levels by
simply changing the parameter option. The left histogram uses the default option="COLZ" while the
right histogram was created using option="SURF2" to allow a 3-dimensional view of the expression level
distribution.

Finally, it is also possible to create 3D-histograms:

> root.hist3D(data.exon, "BreastA.cel", "BreastB.cel", "BreastC.cel",

+ option = "SCAT")

> root.hist3D(data.x.rma, "BreastA.mdp", "BreastB.mdp", "BreastC.mdp",

+ option = "SCAT")

25

The left 3D-histogram compares the raw intensities of the breast tissue triplicates for all probes on
the exon array, while the right scatter-plot compares the respective normalized expression levels.

Since quite often samples are hybridized onto arrays as triplicates, 3D-histograms are helpful in
getting a first impression on the quality of the triplicates.

Note: The 3D-histograms can be rotated interactively, see ?root.hist3D.

A.5 Using methods FARMS and DFW

Analogously to method medianpolish, used for rma, both farms and dfw are multichip summariza-
tion methods. The algorithm for FARMS (Factor Analysis for Robust Microarray Summarization) is
described in (Hochreiter et al., 2006) and is available as package farms. The algorithm for DFW (Dis-
tribution Free Weighted Fold Change) is described in (Chen et al., 2007) and the R implementation can
be downloaded from the web site of M.McGee. Both authors claim that their respective methods out-
perform method rma (see also Affycomp II: A benchmark for Affymetrix GeneChip expression measures).

The R implementation of both methods requires package affy since both methods must be registered
with affy. In contrast, package xps implements both summarization methods in C++ and thus does not
require any additional package.

In general, summarization methods are implemented in package xps as C++ classes derived from
base class XExpressor. Thus summarization method medianpolish is implemented as class XMedian-

Polish, while methods farms and dfw are implemented as classes XFARMS and XDFW, respectively.

To use FARMS you simply do:

> data.farms <- farms(data.test3, "tmp_Test3FARMS", verbose = FALSE)

To use DFW you simply do:

> data.dfw <- dfw(data.test3, "tmp_Test3DFW", verbose = FALSE)

Since the authors of both algorithms recommend to use their summarization methods with quantile
normalization but without background correction, methods farms and dfw follow these suggestions.
Users wanting to use both methods with a background correction method need to use the general

26

method express (see ?express).

In addition to FARMS as summarization method the authors have also implemented a novel filtering
method, called I/NI-calls, to exlcude non-informative genes, see (Talloen et al., 2007). This method
cannot only be used with FARMS but also together with other methods to compute expression measures
such as RMA.

To use I/NI-calls you simply do:

> call.ini <- ini.call(data.test3, "tmp_Test3INI", verbose = FALSE)

Note: Although package farms is available under the GNU General Public License, the authors
state on their web site that: ”This package (i.e. farms 1.x) is only free for non-commercial users. Non-
academic users must have a valid license.” Since I do not know if this statement applies for my C++
implementation, too, it is recommended that respective users contact the authors of the original package.

References

Affymetrix. Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara, CA, version 4 edition,
1999.

Affymetrix. Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara, CA, version 5 edition,
2001.

Z. Chen, M. McGee, Q. Liu, and R.H. Scheuermann. A distribution free summarization method for
affymetrix genechip arrays. Bioinformatics, 23(3):321–327, Feb 2007.

Laurent Gautier, Leslie Cope, Benjamin Milo Bolstad, and Rafael A. Irizarry. affy - an R package for
the analysis of affymetrix genechip data at the probe level. Bioinformatics, 20(3):307–315, Feb 2004.

S. Hochreiter, D.A. Clevert, and K. Obermayer. A new summarization method for affymetrix probe
level data. Bioinformatics, 22(8):943–949, Apr 2006.

Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J. Antonellis,
Uwe Scherf, and Terence P. Speed. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4(2):249–264, 2003.

W. Talloen, D.A. Clevert, K. Obermayer, D. Amaratunga, J. Bijnens, S. Kass, and H.W.H. Gohlmann.
I/ni-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray
data. Bioinformatics, 23(21):2897–2902, Nov 2007.

The ROOT team. ROOT User Guide. Technical report, CERN, 2009. URL http://root.cern.ch/

drupal/content/users-guide.

27

http://root.cern.ch/drupal/content/users-guide
http://root.cern.ch/drupal/content/users-guide

	Introduction
	Why ROOT?
	Getting Started
	Reading CEL file information
	Accessing raw data

	Converting raw data to expression measures
	Calculating expression levels
	Calculating detection calls
	Plotting results

	Filtering expression measures
	Applying non–specific filters: PreFilter
	Applying specific filters for two groups: UniFilter

	Appendices
	Importing chip definition and annotation files
	Additional examples
	Using Biobase class ExpressionSet
	ROOT graphics
	Using methods FARMS and DFW

