RTCA

October 25, 2011

RTCA-class

Class "RTCA"

Description

RTCA object

Objects from the Class

Objects can be created by calls of the form new ("RTCA", assayData, phenoData, featureData, experimentData, annotation, exprs, ...). However, it is more common to be constructed by parseRTCA function by reading in RTCA output data directly.

Slots

Extends

Class ExpressionSet-class, directly. Class eSet-class, by class "ExpressionSet", distance 2. Class VersionedBiobase-class, by class "ExpressionSet", distance 3. Class Versioned-class, by class "ExpressionSet", distance 4.

2 RTCAtimeline-class

Methods

```
addAction signature(object = "RTCA", time = "numeric", action = "character"):
    add action at the specified time, passed to the RTCAtimeline slot
getAction signature(object = "RTCA", time = "numeric"): get action at the spec-
    ified time, passed to the RTCAtimeline slot
plotRTCA signature(x = "RTCA"): plot RTCA
rmAction signature (object = "RTCA", time = "numeric"): remove action at the
    specified time, passed to the RTCAtimeline slot
show signature(object = "RTCA"): print method
expID codesignature(object = "RTCA"): get Experiment ID
expID<- codesignature(object = "RTCA", value = "ANY"): set Experiment ID
time signature (x = "RTCA"): deprecated
timeline signature (object = "RTCA"): get the RTCAtimeline slot
timeline<- signature(object = "RTCA"): assign the RTCAtimeline slot</pre>
timepoints signature(object = "RTCA"): get the recording time points in a vector
timepoints<- signature (object = "RTCA"): assign the recording time points
updateAction signature(object = "RTCA", time = "numeric", action = "character"):
    update the action at the specified time, passed to the RTCAtimeline slot
plot signature (x = "RTCA", y): plot the RTCA running plot with matplot. y is inter-
    pretated as the indices of the columns to be plotted, and will be expanded to all the columns
```

Author(s)

```
Jitao David Zhang < j. zhang@dkfz.de>
```

in case it is missing.

References

```
1 https://www.roche-applied-science.com/sis/xcelligence/index.jsp?id=
    xcect_000000 introduces xCelligence system.
```

```
2 http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html
    for brief introduction into RTCA
```

Examples

```
new("RTCA", expID="testExp01")
```

```
RTCAtimeline-class Class "RTCAtimeline"
```

Description

Time line of actions performed by the xCelligence device, supporting CRUD manipulations (create, read, update and delete).

RTCAtimeline-class 3

Objects from the Class

Objects can be created by calls of the form <code>new("RTCAtimeline")</code>. However, it is more common to be called implicitly by creating an instance of <code>RTCA</code> object.

Slots

```
actionTrack: Object of class "data.frame", records action track in the form of two-column data.frame. The two columns must have the names 'time' and 'action'.
```

timeUnit: Object of class "character", recording the unit of time points stored in the actionTrack slot.

startTime: Object of class "POSIXct", the absolute time when the measurement started (at the time point '0')

Methods

actionTrack signature(object = "RTCAtimeline"): get the action track in the form
 of data.frame

actionTrack<- signature(object = "RTCAtimeline", value = "data.frame"):
 assign the action track</pre>

getAction signature(object = "RTCAtimeline", time = "numeric"): get action at the specified time

orderAction signature(object = "RTCAtimeline"): order the action track by the time

reset signature(object = "RTCAtimeline"): undo all editing of the object and reset it
to the initial state

rmAction signature(object = "RTCAtimeline", time = "numeric"): remove
 the action at the specified time

timeUnit signature(object = "RTCAtimeline"): return the time unit used by the actiont track

timeUnit<- signature(object = "RTCAtimeline", value = "character"): assign the time unit used by the actiont track

timeUnit<- signature(object = "RTCAtimeline", value = "character"): assign the starting POSIXct time of the experiment</pre>

Author(s)

```
Jitao David Zhang < j.zhang@dkfz.de>
```

References

```
1 http://www.xcelligence.roche.com/introduces xCelligence system.
```

2 http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html
 for brief introduction into RTCA

See Also

RTCA

4 alphaNames

Examples

```
tl <- new("RTCAtimeline")
show(tl)</pre>
```

alphaNames

Auxilliary functions for experiments with microtitre plates

Description

Functions to manipulate indices or names of microtitre plates

Usage

```
alphaNames(row = 8, column = 12, order=c("column", "row"))
repairAlphaName(x)
alphaNames2Pos(x)
rowcol2pos(row = 1, column=1, plateFormat=c("96", "384"))
```

Arguments

row integer, row index, 1,...,8 for 96-well plates

column integer, column index, 1,...,12 for 96-well plates

x character, Well alpha name, in the form of [A-Z][0-9][0-9], like 'A01'

order character, should the alpha names returned in a row-first or column-first order?

plateFormat integer, the microtitre format, either 96 or 384

Details

alphaNames returns so-called *alpha well names* in the form of [A-H][0-9][0-9] (i.e., A01, C03, D11, H12) for microtitre plates. The order of returned alphaNames is controlled by the option order, which can be set either as col or row

repairAlphaName attempts to fix incomplete alpha well names. Now it is mainly used to fix well names missing the leading 0 of numeric index, like A1.

alphaName2Pos returns the row and column number of the given alpha well name, in the form of two-column data frame with *row* and *col* as colnames.

rowcol2pos returns the row-wise position index of given row and column index.

Value

See details

Author(s)

```
Jitao David Zhang < j. zhang@dkfz.de>
```

combineRTCA 5

Examples

```
wells <- alphaNames()
repairAlphaName("A1")
alphaNames2Pos(c("A01","B02","C03","H12"))
rowcol2pos(3,1)</pre>
```

combineRTCA

Combine a list of RTCA objects

Description

Combine a list of RTCA objects

Usage

```
combineRTCA(list)
```

Arguments

list

A list of RTCA objects

Details

The current implementation requires all the objects have exactly the same time-points recorded (or at least of same length).

The combined RTCA object has an obligatory column in the phenoData 'Plate' (upper-case!), which matches the names of the RTCA list. When the list has no names, the 'Plate' field is filled with integer index starting from 1.

Value

A new RTCA object

Note

Special attention should be given to the cases where the list parameter partially has names. In this case all items without name will be assigned to a 'Plate' field of empty string (""). Therefore it is advised either to assign names to all items of the list, or leave them all off.

Author(s)

```
Jitao David Zhang < j . zhang@dkfz . de>
```

6 controlView

Examples

```
## An artificial example
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xSub1 <- x[,1:3]
xSub2 <- x[,4:ncol(x)]
xComb <- combineRTCA(list(sub1=xSub1, sub2=xSub2))
identical(exprs(x), exprs(xComb))
pData(xComb)$Plate

## in case of nameless list
pData(combineRTCA(list(xSub1, xSub2)))$Plate

## partial names
pData(combineRTCA(list(a=xSub1, xSub2)))$Plate</pre>
```

controlView

PLOT CONTROL WELLS IN RTCA DATA

Description

A convenience function to plot sample wells with control wells on an *E-plate* in RTCA system. To use the function the phenoData field of the RTCA object must contain a field named "GeneSymbol".

Usage

```
controlView(rtca, genesymbol = c("Allstar", "COPB2", "GFP", "mock", "PLK1", "WEE
```

Arguments

rtca	An object of RTCA.To use the function, the phenoData must contain a column which name is specified by the pData.column parameter.
genesymbol	character, gene symbols to be plotted.
cols	character, colors used by the provided gene symbols
ylim	y-axis lim
smooth	logical, whether the RTCA object should be smoothed before plotting
group	logical. If 'group' is set to TRUE, wells with the same <i>GeneSymbol</i> will be summarized and plotted. For instance, these could be biological replicates. Otherwise each well is plotted separatedly
ylab	y axis label
xlab	x axis label
drawsd	logical, should the error bar be drawn to represent standard deviation?
normline	logical, should the base-time indicated by a line? See ratioTransform for the concept of the <i>base-time</i>
ncol	integer, legend column number
legendpos	character, legend position
pData.column	The column which the genesymbol parameter will be matched with
	other parameters passed to the plot function

derivativeTransform 7

Details

The function is often called to draw sample and control in one plot.

Value

NULL, the function is called for its side effect

Author(s)

```
Jitao David Zhang < j . zhang@dkfz . de>
```

See Also

RTCA

Examples

```
require(RTCA)

ofile <- system.file("extdata/testOutput.csv", package="RTCA")
pfile <- system.file("extdata/testOutputPhenoData.csv", package="RTCA")

pData <- read.csv(pfile, sep="\t", row.names="Well")
metaData <- data.frame(labelDescription=c(
"Rack number",
"siRNA catalogue number",
"siRNA gene symbol",
"siRNA EntrezGene ID",
"siRNA targeting accession"
))

phData <- new("AnnotatedDataFrame", data=pData, varMetadata=metaData)
x <- parseRTCA(ofile, phenoData=phData)

controlView(x, genesymbol=c("mock", "COPB2", "PLK1"), ylim=c(0,2))</pre>
```

derivativeTransform

DERIVATIVE TRANSFORM OF RTCA OBJECT

Description

Derivative transform of RTCA object, returning the change rate of cell impedance

Usage

```
derivativeTransform(object)
```

Arguments

object An object of RTCA

8 factor2numeric

Details

The first derivative of the cell impedance curve measured by RTCA. The derivative of the last time point is estimated by that of the next to last point.

Value

An RTCA object populated with derivative values

Author(s)

```
Jitao David Zhang < j . zhang@dkfz . de>
```

See Also

smoothTransform and interpolationTransform for smoothing and interpolating the RTCA data. rgrTransform calculates relative growth rate, which calls derivativeTransform.

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xDeriv <- derivativeTransform(x)</pre>
```

factor2numeric

FACTOR UNITILITIES

Description

The functions implement easy interface to certain tasks of factor. See datails for explaination

Usage

```
factor2numeric(x)
relevels(x, refs)
```

Arguments

x A vector of factorrefs A vector of character, reference vector to give the orderof levels

Details

relevels re-arrange the order of levels by the given character refs. Alternatively user could use factor (..., levels=refs) to achieve a similar effect, however the relevels enables also partial list. The missing levels in refs will be ordered to the last.

factor2numeric converts factor of numerics into their numeric form.

interpolationTransform

9

Value

A vector of factor

Author(s)

```
Jitao David Zhang < j.zhang@dkfz.de>
```

Examples

```
## factor2numeric
numFac <- factor(c(3.5, 2.5, 2.5, 3.5, 1))
numFac
levels(numFac)
factor2numeric(numFac)
class(factor2numeric(numFac))
## relevels
relevels(numFac, c("3.5", "1", "2.5"))
relevels(numFac, c("3.5", "2.5"))</pre>
```

interpolationTransform

TRANSFORM RTCA DATA WITH INTERPOLATION

Description

Interpolate RTCA data

Usage

```
interpolationTransform(object, interval=0.01, method=c("linear", "constant", "fmm"
```

Arguments

object An RTCA object

other parameters, interval and method are implemented, see below

interval numeric, the interval between interpolated points, set to 0.01 by default

method character, specifying the method for interpolation, "linear" by default (for linear interpolation). Allowed options are: "linear" and "constant" for approx interpolation, and "fmm", "periodic", "natural" and "monoH.FC" for cubic spline interpolation

Details

Since most RTCA experiements record the experiments in the irregular time-series, sometimes however it is desired to have regular intervals. interpolationTransform interpolate between data points to estimate results of regular intervals.

Two classes of interpolations are supported by now: linear (using approx) and cubic spline (spline) interpolation. By default linear interpolation is used.

10 nearestTimeIndex

Value

An interpolated object of RTCA.

Author(s)

```
Jitao David Zhang < j.zhang@dkfz.de>
```

See Also

rgrTransform stands for *relative growth rate transformation*, ratioTransform for ratio normalization adopted by Roche commercial software. smoothTransform to smooth the RTCA readout.

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xInter <- interpolationTransform(x)</pre>
```

nearestTimeIndex

GET INDEX FOR NEAREST TIME

Description

Get index for the nearest time point to the given one. Called internally in many time-point related functions.

Usage

```
nearestTimeIndex(rtca, time)
```

Arguments

rtca An object of RTCA time numeric, a time point

Details

The function finds the time point with minimum absolute difference to the given time and returns its index.

Value

An integer, the index of the nearest time point

Author(s)

```
Jitao David Zhang < j . zhang@dkfz . de>
```

parseRTCA 11

See Also

timepoints to return all time points of an RTCA object.

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

x
xIndex <- nearestTimeIndex(x, 25)
timepoints(x)[xIndex]</pre>
```

parseRTCA

Parse RTCA output file

Description

The function parses RTCA output file into RTCA object

Usage

```
parseRTCA(file, dec = ".", phenoData, skipWell, ...)
```

Arguments

```
file character, name of the RTCA output file
dec decimal sign of the file
phenoData
skipWell character, well(s) to skip
... other parameters passed to read.table
```

Details

A csv-like format file can be exported from the RTCA device, which can be fed into this function to set up an instance of RTCA object.

In the /extdata/ directory of the package, such a file is provided as an example. The first line contains the experiment ID, which is followed by a matrix of recorded data in the tabular form. The first and second column records the time-interval in the unit of hour and hour-minute-second format respectively. The rest columns then record the read-out ('Cell-Index', or 'CI') of the device, with each well a role.

phenoData allows user to annotate the wells. skipWell allows to skip wells in case, for example, they are known to be contaminated.

Value

```
An object of RTCA-class
```

12 plateView

Author(s)

```
Jitao David Zhang < j.zhang@dkfz.de>
```

References

```
http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html
```

Examples

```
require(RTCA)

ofile <- system.file("extdata/testOutput.csv", package="RTCA")
pfile <- system.file("extdata/testOutputPhenoData.csv", package="RTCA")

pData <- read.csv(pfile, sep="\t", row.names="Well")
metaData <- data.frame(labelDescription=c(
"Rack number",
"siRNA catalogue number",
"siRNA gene symbol",
"siRNA EntrezGene ID",
"siRNA targeting accession"
))

phData <- new("AnnotatedDataFrame", data=pData, varMetadata=metaData)
x <- parseRTCA(ofile, phenoData=phData)</pre>
```

plateView

PLATE VIEW OF RTCA DATA

Description

Plots a *E-plate* in RTCA assays in one plot to convey an overview of the plate

Usage

```
plateView(rtca, ylim, ...)
```

Arguments

```
rtca An object of RTCA
ylim ylab lim
```

... Other parameters passed to plot function

Details

For now the function only supports the visualization of a 96-well *E-plate*.

Value

NULL, the function is called for the side effect

plotGridEffect 13

Author(s)

```
Jitao David Zhang < j . zhang@dkfz.de>
```

See Also

RTCA

Examples

```
require(RTCA)

ofile <- system.file("extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

## Not run automatically, because of 'margin too large'
## plateView(x)</pre>
```

plotGridEffect

PLOT GRID EFFECT OF RTCA

Description

Plot the mean and deviation of rows/columns of a RTCA *E-plate*, to provide hints of potential row/column effect of the plate

Usage

```
plotGridEffect(rtca, mode = c("column", "row"), xlab = "time point",
ylab = "readout", legend = TRUE, col, ...)
```

Arguments

rtca	An object of RTCA
mode	character, either "column" or "row", to choose which effect to depict
xlab	x-axis label
ylab	y-axis label
legend	logical, whether the legend should be added
col	Color of the curves
	Further parameters passed to plot function

Details

The error bars depicts the standard deviations

Value

NULL, the funciton is called for its side effect

Author(s)

Jitao David Zhang

14 ratioTransform

Examples

```
require(RTCA)

ofile <- system.file("extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)
plotGridEffect(x)</pre>
```

ratioTransform

RATIO TRANSFORMATION OF RTCA DATA

Description

Performs ratio transformation (normalisation) of RTCA data, as recommended by the producer Roche.

Usage

```
ratioTransform(object, time)
```

Arguments

object An object of RTCA

time numeric, the time point used to normalize the whole series of data

Details

The *xCelligence* software provided by Roche performs ratio transform implicitly by dividing the time-series impedance measurement by the value of a selected time point (so-called 'base-time'), for instance 5 hours after compound transfection, in each cell. The aim of this transformation was to scale (normalize) the data of different wells, since the normalized values of all wells are uniformly 1 at the base-time.

However, this method is vulnerable to arbitrary selection of the time point chosen to normalize. It may be helpful to try several base-time values before comparing normalized results.

See derivativeTransform and rgrTransform for other normalization (scaling) possibilities.

Value

An object of RTCA, populated with normalized value. The normalized values of all wells are uniformly 1 at the base-time.

Author(s)

```
Jitao David Zhang < j.zhang@dkfz.de>
```

See Also

smoothTransform and interpolationTransform for smoothing and interpolating the RTCA data. rgrTransform calculates relative growth rate, derivativeTransform calculates derivative. The later two methods are not sensative to the selection of base-time point.

rgrTransform 15

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xNorm <- ratioTransform(x, 35)</pre>
```

rgrTransform

TRANSFORM RTCA DATA INTO RELATIVE GROWTH RATE

Description

Transform RTCA data into relative growth rate

Usage

```
rgrTransform(object, smooth)
```

Arguments

object An object of RTCA

smooth logical, should the object be smooth transformed after the rgrTransform?

Set to TRUE by default

Details

TODO: relative growth rate

Value

An object of RTCA populated with relative growth rate instead of input data

Author(s)

Jitao David Zhang <j.zhang@dkfz.de>

References

TODO: reference

See Also

 $\label{lem:continuous} \begin{tabular}{ll} derivative Transform for first derivative. $$ ratioTransform for ratio normalization adopted by Roche commercial software. $$ smoothTransform and interpolationTransform for other transformation possibilities. $$ $$$

16 sliceRTCA

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xRgr <- rgrTransform(x)</pre>
```

sliceRTCA

SLICE RTCA OBJECT WITH TIME

Description

Subset (slice) RTCA object with starting- and ending-time

Usage

```
sliceRTCA(x, start, end)
```

Arguments

x An object of RTCA start numeric, start time end numeric, end time

Details

In case the exact starting- or ending-time is not matched, the nearest time point will be used to subset.

Value

An object of RTCA

Author(s)

Jitao David Zhang < j.zhang@dkfz.de>

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

subx <- sliceRTCA(x, 20, 50)</pre>
```

smoothTransform 17

smoothTransform

SMOOTH TRANSFORM OF RTCA OBJECT

Description

Smoothing the RTCA cell impedance measurement

Usage

```
smoothTransform(object, ...)
```

Arguments

```
object An object of RTCA
... Parameters passed to smooth.spline
```

Details

smoothTransform smooths the RTCA cell impedance measurement by calling the function smooth.spline. This feature can be useful for visualiation purposes and in conjuction with other transformations.

Value

An RTCA object populated with smoothed values

Note

ratioTransform performs ratio transformation recommended by the machine provider. interpolationTransf for interpolating the RTCA data. derivativeTransform returns cell impedance change rates and rgrTransform calculates relative growth rate.

Author(s)

```
Jitao David Zhang < j . zhang@dkfz . de>
```

Examples

```
require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)

xSmooth <- smoothTransform(x)</pre>
```

18 spectramaxImport

spectramaxImport Import output files from Spectramax spectrophotometer

Description

Import output files from Spectramax spectrophotometer (plate reader) into the list format compatible with the cellHTS2 package.

Usage

```
spectramaxImport(file, encoding="latin1")
```

Arguments

file A Spectramax file
encoding File character encoding, by default "latin1"

Details

The function imports output files from Spectramax plate reader, with which single-channel cell-based assays could be performed. Such assay includes WST-1 viability assay, which can be used to validate RTCA assay results.

Value

A list of two items: one data frame (no name) and one character vector (*txt*). The data frame contains following columns:

well Well indices ([A-Z][0-9][0-9] format) on the microtitre plate

val Value of each well

The character vector *txt* contains a copy of the file contents.

Author(s)

Jitao David Zhang <j.zhang@dkfz.de>

See Also

cellHTS2 package documentation.

Examples

```
wstFiles <- dir(system.file("extdata", package="RTCA"),
pattern="^WST.*csv$", full.names=TRUE)
spectramaxImport(wstFiles[1])

## NOT RUN
## spectramaxImport also supports multiple files, in which case the
## result is a list of individual lists
spectramaxImport(wstFiles)
## END NOT RUN</pre>
```

Index

```
*Topic IO
                                          expID, RTCA-method (RTCA-class), 1
   parseRTCA, 11
                                          expID<-(RTCA-class), 1
*Topic classes
                                          expID<-, RTCA-method (RTCA-class),
   RTCA-class, 1
   RTCAtimeline-class, 2
                                          ExpressionSet-class, 1
*Topic file
                                          factor2numeric, 8, 8
   parseRTCA, 11
*Topic hplot
                                          getAction (RTCAtimeline-class), 2
   controlView, 6
                                          getAction, RTCA, numeric-method
   plateView, 12
   plotGridEffect, 13
                                                 (RTCA-class), 1
*Topic misc
                                          getAction, RTCAtimeline, numeric-method
                                                 (RTCAtimeline-class), 2
   factor2numeric,8
*Topic models
                                          interpolationTransform, 8, 9, 14, 15,
   rgrTransform, 15
*Topic ts
                                          interpolationTransform, RTCA-method
   interpolationTransform, 9
                                                 (RTCA-class), 1
actionTrack (RTCAtimeline-class),
                                          matplot, 2
actionTrack,RTCAtimeline-method
                                          nearestTimeIndex, 10
       (RTCAtimeline-class), 2
actionTrack<-
                                          orderAction (RTCAtimeline-class),
       (RTCAtimeline-class), 2
actionTrack<-,RTCAtimeline,data.frame-method<sup>2</sup>
                                         orderAction, RTCAtimeline-method
       (RTCAtimeline-class), 2
                                                 (RTCAtimeline-class), 2
addAction (RTCAtimeline-class), 2
addAction, RTCA, numeric, character-method
                                          parseRTCA, 1, 11
       (RTCA-class), 1
addAction, RTCAtimeline, numeric, charactelatmetics 12
                                          plot, 6, 12, 13
       (RTCAtimeline-class), 2
alphaNames,4
                                          plot, RTCA-method (RTCA-class), 1
                                          plotGridEffect, 13
alphaNames2Pos(alphaNames),4
                                          plotRTCA, RTCA-method
approx, 9
                                                 (RTCA-class), 1
combineRTCA. 5
                                          ratioTransform, 6, 10, 14, 15, 17
controlView, 6
                                          ratioTransform, RTCA-method
                                                 (RTCA-class), 1
derivativeTransform, 7, 14, 15, 17
                                          read.table, 11
derivativeTransform,RTCA-method
                                          relevels, 8
       (RTCA-class), 1
                                          relevels (factor2numeric), 8
eSet-class, 1
                                          repairAlphaName (alphaNames), 4
expID (RTCA-class), 1
                                          reset (RTCAtimeline-class), 2
```

20 *INDEX*

```
reset, RTCAtimeline-method
       (RTCAtimeline-class), 2
rgrTransform, 8, 10, 14, 15, 17
rgrTransform, RTCA-method
       (RTCA-class), 1
rmAction (RTCAtimeline-class), 2
rmAction, RTCA, numeric-method
       (RTCA-class), 1
       (RTCAtimeline-class), 2
rowcol2pos (alphaNames), 4
RTCA, 3, 6-8, 10-17
RTCA-class, 1
RTCAtimeline, RTCA-method
                                          VersionedBiobase-class. 1
       (RTCA-class), 1
RTCAtimeline-class, 2
RTCAtimeline<-, RTCA-method
       (RTCA-class), 1
show, RTCA-method (RTCA-class), 1
sliceRTCA, 16
smooth.spline, 17
smoothTransform, 8, 10, 14, 15, 17
smoothTransform, RTCA, ANY-method
       (RTCA-class), 1
smoothTransform,RTCA,missing-method
       (RTCA-class), 1
spectramaxImport, 18
spline, 9
startTime (RTCAtimeline-class), 2
startTime, RTCAtimeline-method
       (RTCAtimeline-class), 2
startTime<-(RTCAtimeline-class),
startTime<-, RTCAtimeline, POSIXct-method
       (RTCAtimeline-class), 2
time, RTCA-method (RTCA-class), 1
timeline (RTCA-class), 1
timeline, RTCA-method
       (RTCA-class), 1
timeline<-(RTCA-class), 1
timeline<-,RTCA-method
       (RTCA-class), 1
timepoints, 11
timepoints (RTCA-class), 1
timepoints, RTCA-method
       (RTCA-class), 1
timepoints <- (RTCA-class), 1
timepoints<-,RTCA-method
       (RTCA-class), 1
timeUnit (RTCAtimeline-class), 2
```

```
timeUnit, RTCAtimeline-method
                                               (RTCAtimeline-class), 2
                                        timeUnit<-(RTCAtimeline-class), 2
                                        timeUnit<-,RTCAtimeline,character-method
                                               (RTCAtimeline-class), 2
                                        updateAction
                                               (RTCAtimeline-class), 2
rmAction, RTCAtimeline, numeric-method updateAction, RTCA, numeric, character-method
                                               (RTCA-class), 1
                                        updateAction, RTCAtimeline, numeric, character-me
                                               (RTCAtimeline-class), 2
                                        Versioned-class, 1
```