
segmentSeq: methods for identifying small RNA

loci from high-throughput sequencing data

Thomas J. Hardcastle

October 18, 2010

1 Introduction

High-throughput sequencing technologies allow the production of large volumes
of short sequences, which can be aligned to the genome to create a set of matches
to the genome. By looking for regions of the genome which to which there are
high densities of matches, we can infer a segmentation of the genome into regions
of biological significance. The methods we propose allows the simultaneous
segmentation of data from multiple samples, taking into account replicate data,
in order to create a consensus segmentation. This has obvious applications in
a number of classes of sequencing experiments, particularly in the discovery of
small RNA loci and novel mRNA transcriptome discovery.

We approach the problem by considering a large set of potential segments
upon the genome and counting the number of tags that match to that segment
in multiple sequencing experiments (that may or may not contain replication).
We then adapt the empirical Bayesian methods based on the Poisson-Gamma
conjugacy and implemented in the baySeq package [1] to establish, for a given
segment, the likelihood that the count data in that segment is similar to back-
ground levels, or that it is similar to the regions to the left or right of that
segment. We then rank all the potential segments in order of increasing likeli-
hood of similarity and reject those segments for which there is a high likelihood
of similarity with the background or the regions to the left or right of the seg-
ment. This gives us a large list of overlapping segments. We reduce this list to
identify non-overlapping loci by choosing, for a set of overlapping segments, the
segment which has the lowest likelihood of similarity with either background or
the regions to the left or right of that segment and rejecting all other segments
that overlap with this segment. For fuller details of the method, see Hardcastle
(2010) [2].

2 Preparation

We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse
are usually massive, we should use (if possible) parallel processing as imple-
mented by the snow package. We therefore need to load the snow package (if it
exists) and define a cluster.

1



> library(snow)

> cl <- makeCluster(4, "SOCK")

If snow is not present, we can proceed anyway with a NULL cluster. Results
may be slightly different depending on whether or not a cluster is used owing
to the non-deterministic elements of the method.

> cl <- NULL

There is a convenience function, processTags which is able to read in tab-
delimited files which have appropriate column names, and create an alignmentData
object. Alternatively, if the appropriate column names are not present, we can
specify which columns to use for the data. In either case, we pass a charac-
ter vector of files, together with information on which data are to be treated as
replicates to the function. We also need to define the lengths of the chromosome
and specifiy the chromosome names as a character. The data here, drawn from
text files in the ’data’ directory of the segmentSeq package are taken from the
first million bases of an alignment to chromosome 1 and the first five hundred
thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a
sequencing experiment where libraries ’SL9’ and ’SL10’ are replicates, as are
’SL26’ and ’SL32’.

> chrlens <- c(1e+06, 5e+05)

> datadir <- system.file("data", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c(1, 1, 2, 2)

> aD <- processTags(libfiles, dir = datadir, replicates, libnames,

+ chrlens, chrs = c(">Chr1", ">Chr2"), header = TRUE)

> aD

An object of class "alignmentData"
22717 rows and 4 columns

Slot "alignments":
chr start end tag duplicated

9233 >Chr1 1 22 GTTTAGGGTTTAGGGTTTAGGG TRUE
206662 >Chr1 3 21 CTAAACCCTAAACCCTAAA TRUE
9231 >Chr1 5 19 AAACCCTAAACCCTA TRUE
9232 >Chr1 5 20 AAACCCTAAACCCTAA TRUE
9234 >Chr1 5 23 AAACCCTAAACCCTAAACC TRUE
22712 more rows...

Slot "data":
[,1] [,2] [,3] [,4]

[1,] 0 1 0 0
[2,] 0 0 0 8
[3,] 0 1 0 0
[4,] 0 1 0 0
[5,] 0 2 0 0
more rows...

2



Slot "libnames":
[1] "SL9" "SL10" "SL26" "SL32"

Slot "libsizes":
[1] 20627 35908 36864 30038

Slot "replicates":
[1] 1 1 2 2

Slot "chrs":
[1] ">Chr1" ">Chr2"

Slot "chrlens":
[1] 1000000 500000

Next, we process this alignmentData object to produce a segData object.
This segData object contains a set of potential segments on the genome de-
fined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of
these segments.

> sD <- processAD(aD, maxgaplen = 500, cl = cl)

> sD

An object of class "segData"
101866 rows and 4 columns

Slot "data":
SL9 SL10 SL26 SL32

1 27 17 0 16
2 28 17 0 16
3 31 18 0 16
4 32 18 0 16
5 32 19 0 18
101861 more rows...

Slot "libsizes":
[1] 20627 35908 36864 30038

Slot "replicates":
[1] 1 1 2 2

Slot "segInfo":
chr start end leftSpace rightSpace

1 >Chr1 1 63 0 1
2 >Chr1 1 88 0 1
3 >Chr1 1 113 0 151
4 >Chr1 1 284 0 120
5 >Chr1 1 427 0 172
101861 more rows...

3



We then try and estimate prior parameters on the data with the getPriors
function. This function constructs a random sample of non-overlapping seg-
ments from the segData object sD and uses the prior estimation functions from
the package baySeq to construct a set of prior parameters on the data. At
present only the Poisson-Gamma method of prior estimation implemented by
baySeq is supported as alternative methods require excessive computational
time. Additional options can be given to the getPriors function to be passed
on to the getPriors.Pois method of the baySeq library.

> sDP <- getPriors(sD, type = "Pois", samplesize = 100, perSE = 0.5,

+ maxit = 1000, cl = cl)

Having found estimates of the prior parameters of the data, we can then
segment the genome based on the information in the segData object. The
function compares, for each replicate group, the likelihood that the number
of alignments matching in a segment is similar to background, or that it is
similar to the regions to the left and right of the segment. It then evaluates the
likelihood that this similarity occurs in all replicate groups, and ranks all the
potential segments in order of decreasing likelihood of similarity. Any segment
with a likelihood of similarity greater than the pcut argument is discarded
at this point. The function then filters the potential segments to form a non-
overlapping set of segments by choosing the segment with the lowest likelihood of
similarity and discarding any segments which overlap with this. By iteratively
discarding overlapping segments, we form a non-overlapping set of segments
which have a low likelihood of being similar to background (and are thus regions
corresponding to a high density of aligned sequences).

> simSegs <- similaritySeg(sDP, pcut = 0.1, estimatePriors = FALSE,

+ verbose = TRUE, cl = cl)

We finally acquire an annotated countData object, with the annotations
describing the co-ordinates of each segment.

> simSegs

An object of class "countData"
326 rows and 4 columns

Slot "data":
SL9 SL10 SL26 SL32

10 86 65 65 101
63 0 15 0 0
70 0 40 126 4
97 759 706 1553 1672
378 1 0 36 3
393 0 0 16 0
401 31 11 48 74
421 74 59 47 21
431 0 0 12 0
433 0 21 68 2
316 more rows...

4



Slot "libsizes":
[1] 20627 35908 36864 30038

Slot "groups":
list()

Slot "annotation":
chr start end PSame

10 >Chr1 1 967 1.053127e-92
63 >Chr1 11427 11927 2.962147e-05
70 >Chr1 12998 13315 1.008540e-48
97 >Chr1 17055 18728 0.000000e+00
378 >Chr1 27657 28200 1.844603e-12
393 >Chr1 33277 33298 2.278137e-04
401 >Chr1 42217 42806 8.540898e-47
421 >Chr1 44668 44870 5.638646e-58
431 >Chr1 47742 47761 3.557223e-03
433 >Chr1 49056 49222 4.273948e-25
316 more rows...

We can use this countData object, in combination with the alignmentData
object, to plot the segmented genome.

> plotGenome(aD, simSegs, chr = ">Chr1", limits = c(1, 1e+05))

This countData object can also be examined for differential expression with
the baySeq package.

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. Empirical Bayesian Meth-
ods For Identifying Patterns of Differential Expression in Count Data. In
submission. 2010.

[2] Thomas J. Hardcastle and Krystyna A. Kelly. Genome Segmentation From
High-Throughput Sequencing Data.. In submission. 2010.

5



1 10001 30001 50001 70001 90001

SL9

SL10

SL26

SL32

1 23 4 5 6 78 910 11 12 131415 16 17

Figure 1: The segmented genome (first 105 bases of chromosome 1.

6


