
flowCore Access to FlowJo Workspaces

John Gosink and Hugh Rand

Amgen, Inc.

Vignette last rewritten: 12th December 2008

Vignette last recompiled: October 18, 2010

Abstract

The flowFlowJo package provides a way to parse FlowJo workspaces into R
data structures with flowCore compliant objects representing the various gates,
compensation matrices, and other related information. The objective of this
package it to make it easy (in R) to use compensation and gating information
that has been produced using FlowJo.

1. Introduction
FlowJo (www.flowjo.com) is a commercially available software package used

for the gating, visualization, and analysis of data from flow cytometry experi-
ments. FlowJo saves its session information in an XML formatted file called a
“workspace” that contains all the information necessary to describe the gating
structures, compensation, transformation, location of the FCS files, and opened
graphs and figures last created by the user. FlowJo workspace files do not con-
tain raw data. This package (flowFlowJo) is a set of methods designed to ex-
tract the file locations, gates, compensation matrices, and other data contained
in FlowJo workspace files and return the information in a manner consistent
with the BioConductor flowCore packages. The typical internal steps taken by
flowFlowJo are:

(1) read and parse a FlowJo workspace,
(2) extract the structure of the gates for the FCS files,
(3) extract compensation matrices for the FCS files,
(4a) produce a series of lists of R/flowCore information necessary to load,

compensate, and gate all of the data files in R as was done in FlowJo , –or–
(4b) directly compile a table of summary statistics for each of the signal

channels (parameters) on all the cell populations for all of the FCS files refer-
enced in the workspace.

The flowFlowJo package also contains a method for combining extracted
summary statistics information with any arbitrary meta data describing the
experimental design or layout and/or meta data embedded within the header
section of each FCS file. We describe all of these processes in detail below.
Finally, this package is known to work with FlowJo version 7.2.2. As a com-
mercial package FlowJo workspace formats change from time-to-time and we
cannot guarantee compatibility with future versions.

1

2. Gates/Filters and Compensation Matrices
Prior to using this package, it is assumed that FlowJo will have been used

to process (compensate and gate) one or more FCS files to produce one or
more FlowJo workspaces. This is a routine process for those analyzing flow
cytometry data. The only caution we mention is that the location of the FCS
files is held in the FlowJo workspace, typically as absolute paths. Moving the
FCS files to another location will cause the location of these files extracted from
the workspace to be in error. For this reason the examples provided below have
to go the extra step of specifying an alternate location for the FCS files other
than as they are given within the provided demonstration FlowJo workspace.

The first step when using flowFlowJo is to read in all of the information
associated with a set of FlowJo workspaces. This is accomplished with the
“readFlowJoList” method. This method takes in a list, vector, or character
string with the full path of one or more FlowJo workspaces and reads in the
gating structures, compensation matrices, transformations and other informa-
tion about the FCS files referenced in the workspace(s) and returns a flowJoList
object.

> library(flowCore)

Scalable Robust Estimators with High Breakdown Point (version 1.1-00)

> library(XML)

> library(flowFlowJo)

> demoLocation <- system.file("extdata", "DemoWorkspace.wsp", package = "flowFlowJo")

> actualFCSLoc <- system.file("extdata/fcsFiles", package = "flowFlowJo")

> testList <- readFlowJoList(demoLocation, altFileLocation = actualFCSLoc)

Getting a workspace for: DemoWorkspace.wsp... got it!
Having a bit of trouble finding your FCS files,
I'll look in /tmp/RtmpsCCror/Rinst2fe3389/flowFlowJo/extdata/fcsFiles.... found them!
Working on: B02 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: A02 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: C02 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: C03 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: A01 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: A03 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: B03 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: B01 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
Working on: C01 A-Phase G-Phase M-Phase M-Phase:M1 Pop M-Phase:M2 Pop S-Phase
done!

To be clear, the readFlowJoList method does not look for, or use, any of
the referenced FCS files. It only looks at the information contained in the

2

workspace(s). It is important to note that at this stage the XML gating struc-
tures embedded within the workspace(s) are converted into flowCore style filter
objects.

The flowJoList object is a list of flowJoObj objects. Each flowJoObj en-
capsulates the contents of one FlowJo workspace. Since FlowJo allows for the
possibility of having a different compensation matrix for each FCS file refer-
enced within a single workspace and because a given FCS file may be dealt with
separately in several different FlowJo workspaces, the readFlowJoList method
allows data from more than one workspace to be combined into one analysis.
This latter approach is often used at our institution such that an assay may
be run over many weeks or months, with the data from each day’s run being
accumulated into a single FlowJo workspace.

After generating a flowJoList object, a user may extract a subset of the gates.
The “getFlowJoGates” method extracts the file name, file name with full path,
filter objects, simplified filter names, and compensation matrices associated with
all of the FCS files that match one or more file name patterns supplied by the
user.

> z <- getFlowJoGates(testList, fileNamePatterns = c("C02"))

> print(summary(z))

Length Class Mode
fcsName 6 -none- character
FCSFilename 6 -none- character
filter 6 -none- list
filterName 6 -none- character
compMats 6 -none- list

> print(summary(z$filter))

Length Class Mode
filter1 1 polygonGate S4
filter2 1 polygonGate S4
filter3 1 polygonGate S4
filter4 1 intersectFilter S4
filter5 1 intersectFilter S4
filter6 1 polygonGate S4

The return item is a list of lists, with each of the sub lists corresponding to the
items described above. These items may be accessed and used arbitrarily. Note
that a single FCS file may be partitioned with several different gates (filters)
and that each of these gates may dependend on other gates as is appropriate to
subdivide the cell populations. The getFlowJoGates method accounts for this
by simply expanding the number of returned items in each of the sub lists to
correspond to each of the intermediate gates. By default, the getFlowJoGates
method concatenates each child gate to its parent gates as an intersect filter.

3

Correspondingly, by default, the code concatenates the gate names for each child
gate to its parents gate names with a colon. Finally, by default each gate name
is preappended with the name of the FCS file it references. Thus, typical gate
names might be:

“SampleA3.fcs:Lymphocytes”,
“SampleA3.fcs:Lymphocytes:CD3+”,
“SampleA3.fcs:Lymphocytes:CD3+:CD8+”
etc...
Consider the case in which a researcher uses FlowJo to gate a set of 30 FCS

files each for 6 different cell populations and sub-populations. A getFlowJo-
Gates call on the resulting workspace file will return a list of length 5 with
elements: ”fcsName”, ”FCSFilename”, ”filter”, ”filterName”, and ”compMats”.
Each element (e.g. fcsName) will in turn be a list of length 180 because there
are 6 gates for each of the 30 FCS files.

Importantly, each of the 5 lists will be in the same order. Thus, for example,
the 37th filter in the“filter”list will be for the 37th FCS file in the“FCSFilename”
list, and that FCS file should be compensated with the 37th compensation
matrix in the “compMats” list. Although other, more compact representations
could be found, these data structures as currently implemented were effective
and general enough for the problems at hand.

Finally, FlowJo currently implements its compensation/spillover matrices
differently than they are implemented in the general flow cytometry community.
Currently, in order to obtain similar results (e.g. MFIs and cell counts) between
FlowJo and flowCore, it is necessary to apply the compensation matrix to the
data in the usual way (ie. via “compensate”), and then to divide all of the
observed data by the maximum of the values in the compensation matrix. The
flowFlowJo package implements a method, flowJoCompensate, to automatically
take care of this issue.

In some cases a data analyst may wish to proceed with the list of lists to
extract and analyze the data to their own design. In many cases however,
the analyst may be satisfied with the gating choices derived during the FlowJo
session and wish to simply proceed with a complete set of summary statistics
on all of the cell populations. This is described in section 4 below.

3. Transformations
The information contained within the “DivaSettings” and “TransformSet-

tings”sections of the FlowJo workspace is currently parsed by the readFlowJoList
method. These components are returned in the data structure produced by the
readFlowJoList method, but there are no other methods in the flowFlowJo pack-
age that utilize these data. All of the non-scatter gates (fluorescence channel
gates) are encoded by their non-transformed gate coordinates. Furthermore, the
scatter gates (FSC, and SSC) are currently (FlowJo 7.2.2) encoded as 1/64 of
their actual (untransformed) gating coordinates. The readFlowJoList method
automatically (internally) multiplies all of the scatter gating coordinates by 64
to adjust for this prior to generating its flowCore filter objects.

4

4. FlowJo Summary Objects
The flowFlowJo package contains a few methods for automatically extract-

ing the major types of information that are often needed from flow experiments
such as median fluorescent intensity, and cell counts. The first step, however, in
automating the analysis of manually gated data is to ensure uniformity of the
naming convention across all of the samples and to confirm that all of the ex-
pected data is present. It has been our experience that bench researchers often
(accidentally) supply slightly different names for the same cell populations, ne-
glect to collect certain populations, lose samples, “unexpectedly” add unplanned
samples etc. during the course of a study. Such uncommunicated variances from
the experimental plan often provide hours of entertainment for the downstream
data analyst. A simple summary of the observed data sets often helps identify
these anomalies. Toward this end, the “getFlowJoSummary” method returns a
table showing the number and counts of different gate names associated with
all of the FCS files.

> getFlowJoSummary(testList, gatesByFile = FALSE, removeParentalNames = TRUE)

A-Phase G-Phase M-Phase M1 Pop M2 Pop S-Phase
9 9 9 9 9 9

> getFlowJoSummary(testList, removeParentalNames = TRUE)

A-Phase G-Phase M-Phase M1 Pop M2 Pop S-Phase

A01 1 1 1 1 1 1
A02 1 1 1 1 1 1
A03 1 1 1 1 1 1
B01 1 1 1 1 1 1
B02 1 1 1 1 1 1
B03 1 1 1 1 1 1
C01 1 1 1 1 1 1
C02 1 1 1 1 1 1
C03 1 1 1 1 1 1

Passing this check, the “collectSummaryFlowInfo” method returns a data
structure with median fluorescent intensities and cell counts for each of the
channels (parameters) for each of the gates, and any arbitrary header informa-
tion from each of the FCS files. It is only at this point that the flowFlowJo
methods actually accesses the FCS files.

> summaryStatsObj <- collectSummaryFlowInfo(testList)

Working on file 1 : B02
Working on file 2 : A02
Working on file 3 : C02

5

Working on file 4 : C03
Working on file 5 : A01
Working on file 6 : A03
Working on file 7 : B03
Working on file 8 : B01
Working on file 9 : C01

Depending on the scale of the experiment and the size of the FCS files, this
method may take some time to execute. Specifically, as each FCS file may be
many Mb in size, the code only reads one FCS file into memory at a time,
extracts the appropriate information, and then moves on to the next file. The
actual steps executed by the code include:

1. Read in the FCS file
2. Apply compensation (accounting for the FlowJo/flowCore compensation

issues discussed above)
3. Gate out each population (and intermediate sub-population)
4. Collect summary statistics on each population and sub-population
5. Collect any header/keyword information embedded in the FCS file as

requested
6. Advance to the next FCS file

A note about step 5. Each FCS file is composed of several parts in addi-
tion to the raw list-mode data. The header section of each FCS file contains
100+ pieces of information about each flow run including such things as laser
settings, photomultiplier gain settings, run times, and other information. The
collectSummaryFlowInfo method can be configured to collect one or more of
these items from each FCS file using the “keywords” option. Through the “cre-
ateFlowReport” method, the summary object can be converted directly into a
simple tabular report (data frame). Alternatively the createFlowReport method
can combine the summary object with a data frame containing additional meta
data about the experiment. In that case, the data frame of additional meta data
(e.g. experimental design factors and sample information) must contain at least
the columns “FCSFilename” and “FlowJoWorkspace”. Each of these columns
should give the full path to the relevant FCS file and FlowJo workspace. Each
row of the data frame should contain information relevant to one sample (FCS
file) of data. The other columns of the data frame can be any arbitrary meta
information such as drug name, treatment time, sample ID, etc. The resulting
flow report will contain 1 line for each parameter of each cell population of each
FCS file along with any associated meta data and keywords from the header
section of the FCS file. For example if we had a standard R data frame that
had experimental design information in it as shown:

> expDescFrame <- data.frame(Drug = c(rep("Amospho", 3), rep("Gleevec",

+ 3), rep("Chloro", 3)), Conc = rep(c(0.001, 1e-04, 1e-05),

+ 3), FCSFilename = dir(actualFCSLoc, full.names = TRUE), FlowJoWorkspace = rep(demoLocation,

+ length(dir(actualFCSLoc))))

6

We can combine this data frame with the summary statistics via the create-
FlowReport method to create a data frame as follows:

> flowReport <- createFlowReport(summaryStatsObj, factorsFrame = expDescFrame)

Working through the summaryList information. FCS files processed so far:
Done!

> print(head(flowReport))

Row Column CellType Measure Value FCSname Drug Conc
1 B 2 B02:A-Phase <FSC-H> FSC-H 191.7 B02 Gleevec 1e-04
2 B 2 B02:A-Phase <SSC-H> SSC-H 317.8 B02 Gleevec 1e-04
3 B 2 B02:A-Phase <FL1-H> FL1-H 16.33 B02 Gleevec 1e-04
4 B 2 B02:A-Phase <FL2-H> FL2-H 5.288 B02 Gleevec 1e-04
5 B 2 B02:A-Phase <FL3-H> FL3-H 52.91 B02 Gleevec 1e-04
6 B 2 B02:A-Phase <FL1-A> FL1-A 0.4076 B02 Gleevec 1e-04

At this point we are free to create any arbitrary report or visualization of the
data using any of the R packages or export some or all of the data to text files as
appropriate. The lattice package can be particularly helpful in this endeavour.
Finally, note that the demo data, gating, and experimental meta information
shown here is completely fabricated for the purposes of this tutorial and don’t
reflect an actual experiment.

5. Summary
In summary, the flowFlowJo package provides a set of methods for extract-

ing and organizing information from FlowJo workspaces and the FCS files ref-
erenced within. In its most basic application it allows the user to retrieve all of
the gates and compensation matrices for all of the FCS files described within
one or more FlowJo workspaces. The gates are returned as flowCore style fil-
ter objects, and the compensation matrices are returned as numeric matrices.
Additional functionality is gained by the ability for the user to effectively run
all of the compensation and gating functions described by the workspace(s) and
automatically retrieve all of the relevant summary statistics into a concise data
structure. These data may also be easily combined with any meta data de-
scribing the nature or source of each sample and any experimental conditions
to which they were subjected.

6. References
Many thanks to Mark Dalphin, Cheng Su, Adam Triester, and Florian Hahne

without whose gentle guidance none of this would be possible.

7

