
CodelinkSet

Diego Diez

October 18, 2010

1 Introduction

The CodelinkSet is an extension of the ExpressionSet class, that improves
de user experience in terms of integration with other Bioconductor packages.
Because this class is derived from ExpressionSet, most functions that work on
ExpressionSet will work in CodelinkSet objects. Futhermore, extension of
existing methods and functions is easier.

2 Loading of data

There is a new function called readCodelinkSet that will load the data in
the old format and convert it into the CodelinkSet format. This function will
replace in the future readCodelink. It is possible to include phenoData and
featureData when calling readCodelinkSet. In addition, the correct anno-
tation package is guessed from the first file and assigned to the annotation
slot.

Instead of giving the list of files to read, it is possible to give it the location
of a targets file. This will be preferred and the information in the targets file
will be used to fill de phenoData slot.

> cset <- readCodelinkSet("targets.txt")

2.1 Feature data

The CodelinkSet stores intensity data in the exprs slot, much the same as
Affymetrix derived data. It also contains a slot background, to accomodate
background intensities. The featureData object will contain further information
like ProbeName, ProbeType, meanSNR (computed when loading data), Row
and Col locations in the chip, etc. The FeatureID is used to name rows, although
the ProbeName is the useful information when accesing annotation data.

1

2.2 Annotations

The CodelinkSet class supports by default new style (AnnotationDbi based)
annotation packages, i.e. all annotations will contain the .db subfix. To change
to the old style you can assign the annotation package by hand:

> library(codelink)

> data(codelink.exprset)

> annotation(codelink.exprset)

[1] "rwgcod"

> annotation(codelink.exprset) <- "rwgcod"

> annotation(codelink.exprset)

[1] "rwgcod"

NOTE: Old style annotation packages will be deprecated for BioC 2.3

3 The User Interface

The user interface has changed to be more consistent and easier to use. All
user method for CodelinkSet object have the prefix ”cod” followed by the cor-
responding method name.

3.1 Data accession

getInt getBkd getSNR
featureNames probeNames sampleNames

3.2 Preprocessing

codCorrect is used for background correction and codNormalize for normaliza-
tion. A convenience function called codPreprocess is also available to combine
in one step background correction and normalization. The devault values found
in the older functions are preserved, i.e. half for codCorrect and quantile cod-
Normalize

> cset <- codPreprocess(codelink.exprset)

3.3 Plots

codPlotMA, codPlotDensities, codPlotCorrelation and codPlotImage are
the corresponding new functions. A convinience funcion codPlot is provided
and the type of plot is choose with the parameter what.

> codPlot(cset, what = "density")

> codPlot(cset, what = "ma")

> codPlot(cset, what = "image")

2

●

0 5 10

0.
00

0.
05

0.
10

0.
15

Intensity

D
en

si
ty

Sample−1
Sample−2
Sample−3
Sample−4

4 Analysis with limma

Analysis using limma is straightforward. The design matrix can be specified
using the phenoData information. In the fit step, the CodelinkSet object can be
passed directly to lmFit. Making life easier for users of the Codelink platform.

> design <- model.matrix(~-1 + factor(cset$Treatment))

> fit <- lmFit(cset, design)

5 Exporting data to a file

You may want to export your normalized data to use it with other analysis
tools. The function writeCodelink allows to do that. By default the index,
probe names, accession number, entrez gene identifiers, intensity and SNR values
are output. If flag = TRUE, then the flags are also output.

> writeCodelink(codelink.exprset, file = "intensities.txt")

3

6 Creating CodelinkSetUnique objects

CodelinkSet objects use the feature id of each probe to obtain unique identifiers.
This feature id is related to the physical location of the probe in the array. This
means that when we use featureNames in a CodelinkSet object we get these
feature ids. To get the probe ids we need to use probeNames instead. This can
be inconvenient when we want to use our data with other packages that use
featureNames to obtain the probe names and feed this ids to the annotation
package. Because the annotation packages use probe names, the probes wouldn’t
be found. To solve this problem a CodelinkSet with unique probe names as
featureNames is needed. To construct such an object we can use the function
averageProbes, that takes a CodelinkSet object and computes the mean of the
intensities for replicated probes. The results are stored in a CodelinkSetUnique
object.

> foo.avg <- averageProbes(codelink.exprset)

This computation takes a lot of time. It is possible to use a parallelized
version (using the package multicore) by making ’parallel=TRUE’ in aver-
ageProbes. See the help for averageProbes for more details on this approach.
The package multicore needs to be loaded in advance by typing library(multicore).

7 Session Info

> sessionInfo()

R version 2.12.0 (2010-10-15)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] codelink_1.18.0 limma_3.6.0 Biobase_2.10.0

loaded via a namespace (and not attached):
[1] AnnotationDbi_1.12.0 DBI_0.2-5 RSQLite_0.9-2
[4] annotate_1.28.0 tools_2.12.0 xtable_1.5-6

4

