
AnnotationDbi: How to use the ”.db” annotation

packages

Marc Carlson, Herve Pages, Seth Falcon, Nianhua Li

April 7, 2011

1 Introduction

1.0.1 Purpose

AnnotationDbi is used primarily to create mapping objects that allow easy
access from R to underlying annotation databases. As such, it acts as the R
interface for all the standard annotation packages. Underlying each Annota-
tionDbi supported annotation package is at least one (and often two) annota-
tion databases. AnnotationDbi also provides schemas for theses databases.
For each supported model organism, a standard gene centric database is
maintained from public sources and is packaged up as an appropriate organ-
ism or ”org” package.

1.0.2 Database Schemas

For developers, a lot of the benefits of having the information loaded into a
real database will require some knowledge about the database schema. For
this reason the schemas that were used in the creation of each database type
are included in AnnotationDbi. The currently supported schemas are listed
in the DBschemas directory of AnnotationDbi. But it is also possible to
simply print out the schema that a package is currently using by using its
” dbschema” method.

There is one schema/database in each kind of package. These schemas
specify which tables and indices will be present for each package of that type.
The schema that a particular package is using is also listed when you type
the name of the package as a function to obtain quality control information.

The code to make most kinds of the new database packages is also in-
cluded in AnnotationDbi. Please see the vignette on SQLForge for more
details on how to make additional database packages.

1

1.0.3 Internal schema Design of org packages

The current design of the organism packages is deliberately simple and gene
centric. Each table in the database contains a unique kind of information
and also an internal identifier called id. The internal id has no meaning
outside of the context of a single database. But id does connect all the data
within a single database.

As an example if we wanted to connect the values in the genes table with
the values in the kegg table, we could simply join the two tables using the
internal id column. It is very important to note however that id does not
have any absolute significance. That is, it has no meaning outside of the
context of the database where it is used. It is tempting to think that an id
could have such significance because within a single database, it looks and
behaves similarly to an entrez gene ID. But id is definitely NOT an entrez
gene ID. The entrez gene IDs are in another table entirely, and can be con-
nected to using the internal id just like all the other meaningful information
inside these databases. Each organism package is centered around one type
of gene identifier. This identifier is found as the gene id field in the genes
table and is both the central ID for the database as well as the foreign key
that chip packages should join to.

The chip packages are ’lightweight’, and only contain information about
the basic probe to gene mapping. You might wonder how such packages can
provide access to all the other information that they do. This is possible
because all the other data provided by chip packages comes from joins that
are performed by AnnotationDbi behind the scenes at run time. All chip
packages have a dependency on at least one organism package. The name
of the organism package being depended on can be found by looking at
its ”ORGPKG” value. To learn about the schema from the appropriate
organism package, you will need to look at the ” dbschema” method for that
package. In the case of the chip packages, the gene id that in these packages
is mapped to the probe ids, is used as a foreign key to the appropriate
organism package.

Specialized packages like the packages for GO and KEGG, will have
their own schemas but will also adhere to the use of an internal id for joins
between their tables. As with the organism packages, this id is not suitable
for use as a foreign key.

For a complete listing of the different schemas used by various packages,
users can use the available.dbschemas function. This list will also tell you
which model organisms are supported.

> require(org.Hs.eg.db)

2

> available.dbschemas()

2 Examples

2.0.4 Basic information

The AnnotationDbi package provides an interface to SQLite-based annota-
tion packages. Each SQLite-based annotation package (identified by a “.db”
suffix in the package name) contains a number of AnnDbBimap objects in
place of the environment objects found in the old-style environment-based
annotation packages. The API provided by AnnotationDbi allows you to
treat the AnnDbBimap objects like environment instances. For example,
the functions [[, get, mget, and ls all behave the same as they did with
the older environment based annotation packages. In addition, new meth-
ods like [, toTable, subset and others provide some additional flexibility
in accessing the annotation data.

R> library("hgu95av2.db")

The same basic set of objects is provided with the db packages:

R> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2ACCNUM"
[3] "hgu95av2ALIAS2PROBE" "hgu95av2CHR"
[5] "hgu95av2CHRLENGTHS" "hgu95av2CHRLOC"
[7] "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"
[9] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID"
[11] "hgu95av2ENZYME" "hgu95av2ENZYME2PROBE"
[13] "hgu95av2GENENAME" "hgu95av2GO"
[15] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE"
[17] "hgu95av2MAP" "hgu95av2MAPCOUNTS"
[19] "hgu95av2OMIM" "hgu95av2ORGANISM"
[21] "hgu95av2ORGPKG" "hgu95av2PATH"
[23] "hgu95av2PATH2PROBE" "hgu95av2PFAM"
[25] "hgu95av2PMID" "hgu95av2PMID2PROBE"
[27] "hgu95av2PROSITE" "hgu95av2REFSEQ"
[29] "hgu95av2SYMBOL" "hgu95av2UNIGENE"
[31] "hgu95av2UNIPROT" "hgu95av2_dbInfo"
[33] "hgu95av2_dbconn" "hgu95av2_dbfile"
[35] "hgu95av2_dbschema"

3

Exercise 1
Start an R session and use the library function to load the hgu95av2.db
software package. Use search() to see that an organism package was also
loaded and then use the approriate ” dbschema” methods to the schema for
the hgu95av2.db and org.Hs.eg.db packages.

It is possible to call the package name as a function to get some QC
information about it.

R> qcdata = capture.output(hgu95av2())

R> head(qcdata, 20)

[1] "Quality control information for hgu95av2:"
[2] ""
[3] ""
[4] "This package has the following mappings:"
[5] ""
[6] "hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)"
[7] "hgu95av2ALIAS2PROBE has 38413 mapped keys (of 110538 keys)"
[8] "hgu95av2CHR has 11722 mapped keys (of 12625 keys)"
[9] "hgu95av2CHRLENGTHS has 93 mapped keys (of 93 keys)"
[10] "hgu95av2CHRLOC has 11629 mapped keys (of 12625 keys)"
[11] "hgu95av2CHRLOCEND has 11629 mapped keys (of 12625 keys)"
[12] "hgu95av2ENSEMBL has 11480 mapped keys (of 12625 keys)"
[13] "hgu95av2ENSEMBL2PROBE has 9156 mapped keys (of 19887 keys)"
[14] "hgu95av2ENTREZID has 11725 mapped keys (of 12625 keys)"
[15] "hgu95av2ENZYME has 2081 mapped keys (of 12625 keys)"
[16] "hgu95av2ENZYME2PROBE has 762 mapped keys (of 936 keys)"
[17] "hgu95av2GENENAME has 11725 mapped keys (of 12625 keys)"
[18] "hgu95av2GO has 11312 mapped keys (of 12625 keys)"
[19] "hgu95av2GO2ALLPROBES has 12288 mapped keys (of 13360 keys)"
[20] "hgu95av2GO2PROBE has 9027 mapped keys (of 10161 keys)"

Alternatively, you can get similar information on how many items are in
each of the provided maps by looking at the MAPCOUNTs:

R> hgu95av2MAPCOUNTS

To demonstrate the environment API, we’ll start with a random sample
of probe set IDs.

R> all_probes <- ls(hgu95av2ENTREZID)

R> length(all_probes)

4

[1] 12625

R> set.seed(0xa1beef)

R> probes <- sample(all_probes, 5)

R> probes

[1] "31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

The usual ways of accessing annotation data are also available.

R> hgu95av2ENTREZID[[probes[1]]]

[1] "9136"

R> hgu95av2ENTREZID$"31882_at"

[1] "9136"

R> syms <- unlist(mget(probes, hgu95av2SYMBOL))

R> syms

31882_at 38780_at 37033_s_at 1702_at 31610_at
"RRP9" "AKR1A1" "GPX1" "IL2RA" "PDZK1IP1"

The annotation packages provide a huge variety of information in each
package. Some common types of information include gene symbols (SYM-
BOL), GO terms (GO), KEGG pathway IDs (KEGG), ENSEMBL IDs (EN-
SEMBL) and chromosome start and stop locations (CHRLOC and CHRLOCEND).
Each mapping will have a manual page that you can read to describe the
data in the mapping and where it came from.

R> ?hgu95av2CHRLOC

Exercise 2
For the probes in ’probes’ above, use the annotation mappings to find the
chromosome start locations.

2.0.5 Manipulating Bimap Objects

Many filtering operations on the annotation Bimap objects require conver-
sion of the AnnDbBimap into a list . In general, converting to lists will not
be the most efficient way to filter the annotation data when using a SQLite-
based package. Compare the following two examples for how you could get

5

the 1st ten elements of the hgu95av2SYMBOL mapping. In the 1st case we
have to get the entire mapping into list form, but in the second case we first
subset the mapping object itself and this allows us to only convert the ten
elements that we care about.

R> system.time(as.list(hgu95av2SYMBOL)[1:10])

R> ## vs:

R>

R> system.time(as.list(hgu95av2SYMBOL[1:10]))

There are many different kinds of Bimap objects in AnnotationDbi, but
most of them are of class AnnDbBimap. All /RclassBimap objects represent
data as a set of left and right keys. The typical usage of these mappings is to
search for right keys that match a set of left keys that have been supplied by
the user. But sometimes it is also convenient to go in the opposite direction.

The annotation packages provide many reverse maps as objects in the
package name space for backwards compatibility, but the reverse mappings
of almost any map is also available using revmap. Since the data are stored
as tables, no extra disk space is needed to provide reverse mappings.

R> unlist(mget(syms, revmap(hgu95av2SYMBOL)))

RRP9 AKR1A1 GPX1 IL2RA PDZK1IP1
"31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

So now that you know about the revmap function you might try some-
thing like this:

R> as.list(revmap(hgu95av2PATH)["00300"])

$`00300`
[1] "35761_at" "35870_at"

Note that in the case of the PATH map, we don’t need to use revmap(x)
because hgu95av2.db already provides the PATH2PROBE map:

R> x <- hgu95av2PATH

R> ## except for the name, this is exactly revmap(x)

R> revx <- hgu95av2PATH2PROBE

R> revx2 <- revmap(x, objName="PATH2PROBE")

R> revx2

6

PATH2PROBE map for chip hgu95av2 (object of class "ProbeAnnDbBimap")

R> identical(revx, revx2)

[1] TRUE

R> as.list(revx["00300"])

$`00300`
[1] "35761_at" "35870_at"

Note that most maps are reversible with revmap, but some (such as the
more complex GO mappings), are not. Why is this? Because to reverse a
mapping means that there has to be a ”value” that will always become the
”key” on the newly reversed map. And GO mappings have several distinct
possibilities to choose from (GO ID, Evidence code or Ontology). In non-
reversible cases like this, AnnotationDbi will usually provide a pre-defined
reverse map. That way, you will always know what you are getting when
you call revmap

While we are on the subject of GO and GO mappings, there are a series of
special methods for GO mappings that can be called to find out details about
these IDs. Term,GOID, Ontology, Definition,Synonym, and Secondary are
all useful ways of getting additional information about a particular GO ID.
For example:

R> Term("GO:0000018")

GO:0000018
"regulation of DNA recombination"

R> Definition("GO:0000018")

GO:0000018
"Any process that modulates the frequency, rate or extent of DNA recombination, a process by which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents."

Exercise 3
Given the following set of RefSeq IDs: c(”NG 005114”,”NG 007432”,”NG 008063”),
Find the Entrez Gene IDs that would correspond to those. Then find the
GO terms that are associated with those entrez gene IDs.

org.Hs.eg.db packages.

7

2.0.6 The Contents and Structure of Bimap Objects

Sometimes you may want to display or subset elements from an individual
map. A Bimap interface is available to access the data in table (data.frame)
format using [and toTable.

R> head(toTable(hgu95av2GO[probes]))

probe_id go_id Evidence Ontology
1 1702_at GO:0002437 IEA BP
2 1702_at GO:0006915 TAS BP
3 1702_at GO:0006924 IEA BP
4 1702_at GO:0006955 TAS BP
5 1702_at GO:0007166 TAS BP
6 1702_at GO:0008283 TAS BP

The toTable function will display all of the information in a Bimap.
This includes both the left and right values along with any other attributes
that might be attached to those values. The left and right keys of the Bimap
can be extracted using Lkeys and Rkeys. If is is necessary to only display
information that is directly associated with the left to right links in a Bimap,
then the links function can be used. The links returns a data frame with
one row for each link in the bimap that it is applied to. It only reports the
left and right keys along with any attributes that are attached to the edge
between these two values.

Note that the order of the cols returned by toTable does not depend on
the direction of the map. We refer to it as an ’undirected method’:

R> toTable(x)[1:6,]

probe_id path_id
1 1000_at 04010
2 1000_at 04012
3 1000_at 04062
4 1000_at 04114
5 1000_at 04150
6 1000_at 04270

R> toTable(revx)[1:6,]

probe_id path_id
1 1000_at 04010

8

2 1000_at 04012
3 1000_at 04062
4 1000_at 04114
5 1000_at 04150
6 1000_at 04270

Notice however that the Lkeys are always on the left (1st col), the Rkeys
always in the 2nd col

There can be more than 2 columns in the returned data frame:
3 cols:

R> toTable(hgu95av2PFAM)[1:6,] # the right values are tagged

probe_id ipi_id PfamId
1 1000_at IPI00018195 PF00069
2 1000_at IPI00304111 PF00069
3 1000_at IPI00742900 PF00069
4 1000_at IPI00793141 PF00069
5 1001_at IPI00019530 PF00041
6 1001_at IPI00019530 PF07714

R> as.list(hgu95av2PFAM["1000_at"])

$`1000_at`
IPI00018195 IPI00304111 IPI00742900 IPI00793141
"PF00069" "PF00069" "PF00069" "PF00069"

But the Rkeys are ALWAYS in the 2nd col.
For length() and keys(), the result does depend on the direction, hence

we refer to these as ’directed methods’:

R> length(x)

[1] 12625

R> length(revx)

[1] 214

R> allProbeSetIds <- keys(x)

R> allKEGGIds <- keys(revx)

9

There are more ’undirected’ methods listed below:

R> junk <- Lkeys(x) # same for all maps in hgu95av2.db (except pseudo-map

R> # MAPCOUNTS)

R> Llength(x) # nb of Lkeys

[1] 12625

R> junk <- Rkeys(x) # KEGG ids for PATH/PATH2PROBE maps, GO ids for

R> # GO/GO2PROBE/GO2ALLPROBES maps, etc...

R> Rlength(x) # nb of Rkeys

[1] 214

Notice how they give the same result for x and revmap(x)
You might be tempted to think that Lkeys and Llength will tell you all

that you want to know about the left keys. But things are more complex than
this, because not all keys are mapped. Often, you will only want to know
about the keys that are mapped (ie. the ones that have a corresponding
Rkey). To learn this you want to use the mappedkeys or the undirected
variants mappedLkeys and mappedRkeys. Similarily, the count.mappedkeys,
count.mappedLkeys and count.mappedRkeys methods are very fast ways
to determine how many keys are mapped. Accessing keys like this is usually
very fast and so it can be a decent strategy to subset the mapping by 1st
using the mapped keys that you want to find.

R> x = hgu95av2ENTREZID[1:10]

R> ## Directed methods

R> mappedkeys(x) # mapped keys

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"
[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

R> count.mappedkeys(x) # nb of mapped keys

[1] 10

R> ## Undirected methods

R> mappedLkeys(x) # mapped left keys

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"
[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

10

R> count.mappedLkeys(x) # nb of mapped Lkeys

[1] 10

If you want to find keys that are not mapped to anything, you might
want to use isNA.

R> y = hgu95av2ENTREZID[isNA(hgu95av2ENTREZID)] # usage like is.na()

R> Lkeys(y)[1:4]

[1] "1047_s_at" "1089_i_at" "108_g_at" "1090_f_at"

Exercise 4
How many probesets do not have a GO mapping for the hgu95av2.db pack-
age? How many have no mapping? Find a probeset that has a GO mapping.
Now look at the GO mappings for this probeset in table form.

2.0.7 Some specific examples

Lets use what we have learned to get information about the probes that are
are not assigned to a chromosome:

R> x <- hgu95av2CHR

R> Rkeys(x)

[1] "1" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "2" "20"
[14] "21" "22" "3" "4" "5" "6" "7" "8" "9" "MT" "Un" "X" "Y"

R> chroms <- Rkeys(x)[23:24]

R> chroms

[1] "MT" "Un"

R> Rkeys(x) <- chroms

R> toTable(x)

probe_id chromosome
1 31593_at Un
2 40590_at Un

To get this in the classic named-list format:

R> z <- as.list(revmap(x)[chroms])

R> names(z)

11

[1] "MT" "Un"

R> z[["Y"]]

NULL

Many of the common methods for accessing Bimap objects return things
in list format. This can be convenient. But you have to be careful about this
if you want to use unlist(). For example the following will return multiple
probes for each chromosome:

R> chrs = c("12","6")

R> mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA)

$`12`
[1] "1018_at" "1019_g_at" "101_at" "1021_at"

$`6`
[1] "1007_s_at" "1026_s_at" "1027_at"

But look what happens here if we try to unlist that:

R> unlist(mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA))

121 122 123 124 61 62
"1018_at" "1019_g_at" "101_at" "1021_at" "1007_s_at" "1026_s_at"

63
"1027_at"

Yuck! One trick that will sometimes help is to use Rfunctionunlist2. But
be careful here too. Depending on what step comes next, Rfunctionunlist2
may not really help you...

R> unlist2(mget(chrs, revmap(hgu95av2CHR[1:30]), ifnotfound=NA))

12 12 12 12 6 6
"1018_at" "1019_g_at" "101_at" "1021_at" "1007_s_at" "1026_s_at"

6
"1027_at"

Lets ask if the probes in ’pbids’ mapped to cytogenetic location ”18q11.2”?

12

R> x <- hgu95av2MAP

R> pbids <- c("38912_at", "41654_at", "907_at", "2053_at", "2054_g_at",

"40781_at")

R> x <- subset(x, Lkeys=pbids, Rkeys="18q11.2")

R> toTable(x)

probe_id cytogenetic_location
1 2053_at 18q11.2
2 2054_g_at 18q11.2

To coerce this map to a named vector:

R> pb2cyto <- as.character(x)

R> pb2cyto[pbids]

<NA> <NA> <NA> 2053_at 2054_g_at <NA>
NA NA NA "18q11.2" "18q11.2" NA

The coercion of the reverse map works too but issues a warning because
of the duplicated names for the reasons stated above:

R> cyto2pb <- as.character(revmap(x))

2.0.8 Accessing probes that map to multiple targets

In many probe packages, some probes are known to map to multiple genes.
The reasons for this can be biological as happens in the arabidopsis packages,
but usually it is due to the fact that the genome builds that chip platforms
were based on were less stable than desired. Thus what may have originally
been a probe designed to measure one thing can end up measuring many
things. Usually you don’t want to use probes like this, because if they man-
ufacturer doesn’t know what they map to then their usefullness is definitely
suspect. For this reason, by default all chip packages will normally hide such
probes in the standard mappings. But sometimes you may want access to
the answers that the manufacturer says such a probe will map to. In such
cases, you will want to use the toggleProbes method. To use this method,
just call it on a standard mapping and copy the result into a new mapping
(you cannot alter the original mapping). Then treat the new mapping as
you would any other mapping.

R> ## How many probes?

R> dim(hgu95av2ENTREZID)

13

[1] 11725 2

R> ## Make a mapping with multiple probes exposed

R> multi <- toggleProbes(hgu95av2ENTREZID, "all")

R> ## How many probes?

R> dim(multi)

[1] 12896 2

If you then decide that you want to make a mapping that has only
multiple mappings or you wish to revert one of your maps back to the default
state of only showing the single mappings then you can use toggleProbes
to switch back and forth.

R> ## Make a mapping with ONLY multiple probes exposed

R> multiOnly <- toggleProbes(multi, "multiple")

R> ## How many probes?

R> dim(multiOnly)

[1] 1171 2

R> ## Then make a mapping with ONLY single mapping probes

R> singleOnly <- toggleProbes(multiOnly, "single")

R> ## How many probes?

R> dim(singleOnly)

[1] 11725 2

Finally, there are also a pair of test methods hasMultiProbes and has-
SingleProbes that can be used to see what methods a mapping presently
has exposed.

R> ## Test the multiOnly mapping

R> hasMultiProbes(multiOnly)

[1] TRUE

R> hasSingleProbes(multiOnly)

[1] FALSE

R> ## Test the singleOnly mapping

R> hasMultiProbes(singleOnly)

14

[1] FALSE

R> hasSingleProbes(singleOnly)

[1] TRUE

2.0.9 Using SQL to access things directly

While the mapping objects provide a lot of convenience, sometimes there are
definite benefits to writing a simple SQL query. But in order to do this, it is
necessary to know a few things. The 1st thing you will need to know is some
SQL. Fortunately, it is quite easy to learn enough basic SQL to get stuff out
of a database. Here are 4 basic SQL things that you may find handy:

First, you need to know about SELECT statements. A simple example
would look something like this:

SELECT * FROM genes;
Which would select everything from the genes table.
SELECT gene id FROM genes;
Will select only the gene id field from the genes table.
Second you need to know about WHERE clauses:
SELECT gene id, id FROM genes WHERE gene id=1;
Will only get records from the genes table where the gene id is = 1.
Thirdly, you will want to know about an inner join:
SELECT * FROM genes,chromosomes WHERE genes. id=chromosomes. id;
This is only slightly more complicated to understand. Here we want to

get all the records that are in both the ’genes’ and ’chromosomes’ tables,
but we only want ones where the ’ id’ field is identical. This is known as
an inner join because we only want the elements that are in both of these
tables with respect to ’ id’. There are other kinds of joins that are worth
learning about, but most of the time, this is all you will need to do.

Finally, it is worthwhile to learn about the AS keyword which is useful
for making long queries easier to read. For the previous example, we could
have written it this way to save space:

SELECT * FROM genes AS g,chromosomes AS c WHERE g. id=c. id;
In a simple example like this you might not see a lot of savings from

using AS, so lets consider what happens when we want to also specify which
fields we want:

SELECT g.gene id,c.chromosome FROM genes AS g,chromosomes AS c
WHERE g. id=c. id;

Now you are most of the way there to being able to query the databases
directly. The only other thing you need to know is a little bit about how

15

to access these databases from R. With each package, you will also get a
method that will print the schema for its database, you can view this to see
what sorts of tables are present etc.

R> org.Hs.eg_dbschema()

To access the data in a database, you will need to connect to it. Fortu-
nately, each package will automatically give you a connection object to that
database when it loads.

R> org.Hs.eg_dbconn()

You can use this connection object like this:

R> query <- "SELECT gene_id FROM genes LIMIT 10;"

R> result = dbGetQuery(org.Hs.eg_dbconn(), query)

R> result

Exercise 5
Retrieve the entrez gene ID and chromosome by using a database query.
Show how you could do the same thing by using toTable

2.0.10 Combining data from multiple annotation packages at the
SQL level

For a more complex example, consider the task of obtaining all gene symbols
which are probed on a chip that have at least one GO BP ID annotation
with evidence code IMP, IGI, IPI, or IDA. Here is one way to extract this
using the environment-based packages:

R> ## Obtain SYMBOLS with at least one GO BP

R> ## annotation with evidence IMP, IGI, IPI, or IDA.

R> system.time({

bpids <- eapply(hgu95av2GO, function(x) {

if (length(x) == 1 && is.na(x))

NA

else {

sapply(x, function(z) {

if (z$Ontology == "BP")

z$GOID

else

NA

16

})

}

})

bpids <- unlist(bpids)

bpids <- unique(bpids[!is.na(bpids)])

g2p <- mget(bpids, hgu95av2GO2PROBE)

wantedp <- lapply(g2p, function(x) {

x[names(x) %in% c("IMP", "IGI", "IPI", "IDA")]

})

wantedp <- wantedp[sapply(wantedp, length) > 0]

wantedp <- unique(unlist(wantedp))

ans <- unlist(mget(wantedp, hgu95av2SYMBOL))

})

R> length(ans)

R> ans[1:10]

All of the above code could have been reduced to a single SQL query
with the SQLite-based packages. But to put together this query, you would
need to look 1st at the schema to know what tables are present:

R> hgu95av2_dbschema()

This function will give you an output of all the create table statements
that were used to generate the hgu95av2 database. In this case, this is
a chip package, so you will also need to see the schema for the organism
package that it depends on. To learn what package it depends on, look at
the ORGPKG value:

R> hgu95av2ORGPKG

Then you can see that schema by looking at its schema method:

R> org.Hs.eg_dbschema()

So now we can see that we want to connect the data in the go bp, and
symbol tables from the org.Hs.eg.sqlite database along with the probes data
in the hgu95av2.sqlite database. How can we do that?

It turns out that one of the great conveniences of SQLite is that it al-
lows other databases to be ‘ATTACHed’. Thus, we can keep our data in
many differnt databases, and then ’ATTACH’ them to each other in a mod-
ular fashion. The databases for a given build have been built together and

17

frozen into a single version specifically to allow this sort of behavoir. To
use this feature, the SQLite ATTACH command requires the filename for
the database file on your filesystem. Fortunately, R provides a nice system
independent way of getting that information. Note that the name of the
database is always the same as the name of the package, with the suffix
’.sqlite’.:

R> orgDBLoc = system.file("extdata", "org.Hs.eg.sqlite", package="org.Hs.eg.db")

R> attachSQL = paste("ATTACH '", orgDBLoc, "' AS orgDB;", sep = "")

R> dbGetQuery(hgu95av2_dbconn(), attachSQL)

NULL

Finally, you can assemble a cross-db sql query and use the helper func-
tion as follows. Note that when we want to refer to tables in the attached
database, we have to use the ’orgDB’ prefix that we specified in the ’AT-
TACH’ query above.:

R> system.time({

SQL <- "SELECT DISTINCT probe_id,symbol FROM probes, orgDB.gene_info AS gi, orgDB.genes AS g, orgDB.go_bp AS bp WHERE bp._id=g._id AND gi._id=g._id AND probes.gene_id=g.gene_id AND bp.evidence IN ('IPI', 'IDA', 'IMP', 'IGI')"
zz <- dbGetQuery(hgu95av2_dbconn(), SQL)

})

user system elapsed
0.172 0.004 0.178

R> #its a good idea to always DETACH your database when you are finished...

R> dbGetQuery(hgu95av2_dbconn(), "DETACH orgDB")

NULL

Exercise 6
Retrieve the entrez gene ID, chromosome location information and cytoband
infomration by using a single database query.

Exercise 7
Expand on the example in the text above to combine data from the hgu95av2.db
and org.Hs.eg.db with the GO.db package so as to include the GO ID, and
term definition in the output.

The version number of R and packages loaded for generating the vignette
were:

18

R version 2.12.2 (2011-02-25)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] GO.db_2.4.5 hgu95av2.db_2.4.5 org.Hs.eg.db_2.4.6
[4] RSQLite_0.9-4 DBI_0.2-5 AnnotationDbi_1.12.1
[7] Biobase_2.10.0

loaded via a namespace (and not attached):
[1] tools_2.12.2

19

