
Description of exonmap: simple analysis and
annotation tools for Affymetrix exon arrays

Micha lJ Okoniewski, Tim Yates, Crispin J Miller

October 13, 2008

Contents

1 Introduction 2

2 Initial processing of exon array data 2

3 Reading in data and generating expression calls 2

4 Pairwise comparison of expression data 4

5 Connecting to the database 4

6 Translation routines for genes, transcripts, exons and probesets 4

7 More details 5

8 Finding items at specified locations in the genome 6

9 Genes,exons and probesets in a single query 6

10 Probeset filtering 7

11 Plotting genes of interest 8

12 Splicing index and splicing ANOVA 12

13 ESTs, in silico predictions etc... 13

14 Putting it all together 14

1



1 Introduction

The package exonmap is intended to support various forms of data analysis for Affymetrix
Exon microarrays. It includes a variety of routines for translating between probesets,
exons, genes and transcripts, and makes use of a relational database (X:Map) to define
these relationships for the current genome assembly. X:Map is built using Ensembl and
Affymetrix annotation data, along with custom probeset to genome mappings.

Genome mappings were generated by searching probe sequences against the entire
human (or mouse) genome and building database tables representing their hit locations
and hit specificity. These are placed alongside data describing the relationships between
exons, transcripts and genes. Most of this is hidden from the user; the package uses
a series of functions (e.g. probeset.to.exon) that provide mappings between char-
acter vectors of database identifiers, while managing the underlying database queries
internally.

The package provides graphics routines for plotting individual genes, and for colour-
ing them by expression level or fold-change, and functions are also provided to link to
the X:Map genome browser at http://xmap.picr.man.ac.uk.

The X:Map database and the exonmap package are described in more detail in:
“Okoniewski MJ, Yates T, Dibben S, Miller CJ. An annotation infrastructure for the

analysis and interpretation of Affymetrix exon array data. Genome Biol. 2007;8(5):R79.”

2 Initial processing of exon array data

exonmap makes use of the affy package; a basic understanding of the library and its
vignette is a good idea. We also assume that the reader knows how the Affymetrix
system works. A good starting point is the Affymetrix MAS manual, which can be
found at http://www.affymetrix.com.

Although this package is designed primarily to support annotation, it does contain
some basic utility functions to make it easy to load and begin to explore exon array data.
The following section exists simply to provide a quick route to a list of differentially
expressed probesets; alternative strategies are of course possible, and you may choose to
skip this section and use your own approach.

3 Reading in data and generating expression calls

The first thing you need to do is to get R to use the exonmap package by telling it to
load the library:

> library(exonmap)

> library(affy)

2

http://xmap.picr.man.ac.uk
h


R needs to know about the replicates in your experiment, so we must also load some
descriptive data that says which arrays were replicates and also something about the
different experimental conditions you were testing. This means that exonmap needs two
things:

1. your .CEL files, and

2. a white-space delimited file describing the samples that went on them.

By default, this file is called covdesc. The first column should have no header, and
contains the names of the .CEL files you want to process. Each remaining column is
used to describe something in the experiment you want to study. For example you might
have a set of chips produced by treating a cell line with two drugs. Your covdesc file
might look like something like this:

treatment
ctrl1.cel n
ctrl2.cel n
ctrl3.cel n

a1.cel a
a2.cel a
a3.cel a
b1.cel b
b2.cel b
b3.cel b

ab1.cel a.b
ab2.cel a.b

This is similar to the approach taken by simpleaffy .
The easiest way to get going is to:

1. Create a directory, move all the relevant CEL files to that directory

2. Create a covdesc file and put it in the same directory

3. If using linux/unix, start R in that directory.

4. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

5. Load the library.

Exon array CEL files may be read using the function read.exon. In all cases, an
experiment description file (covdesc) must be present.

In addition, a CDF metadata package must be specified. Versions of CDF metadata
for mouse and human exon arrays can be downloaded from http://xmap.picr.man.ac.uk.
The CDF metadata cannot include control or backround probesets if you are going to
process it with RMA or plier.

For example, to get started, you might run something like:

3



> raw.data <- read.exon()

> if (exists(raw.data)) {

+ raw.data@cdfName <- "exon.pmcdf"

+ x.rma <- rma(raw.data)

+ }

The CDF files exon.pmcdf (for the Human Exon 1.0ST array) and mouseexonpmcdf
(for the Mouse Exon 1.0 ST array), available from http://bioinformatics.picr.man.ac.uk
have been prepared by processing the ASCII CDF files from Affymetrix using the
( makecdfenv) and ( altcdfenvs) packages. They include PM probes only. Probesets
representing genomic and antigenomic background and control probesets have also been
removed.

4 Pairwise comparison of expression data

The function pc provides fast pairwise comparisons for ExpressionSet objects.

> data(exonmap)

> pc.exonmap <- pc(x.rma, "group", c("a", "b"))

pc produces an object of class PC that has two slots: fc, for the log2 fold change and
tt containing a t-test p-value. For the purpose of this vignette, we use these to select
significant probesets, although other more in-depth approaches are of course possible.
For example:

> sigs <- names(fc(pc.exonmap))[(abs(fc(pc.exonmap)) > 1) & (tt(pc.exonmap) <

+ 1e-04)]

> length(sigs)

[1] 31

5 Connecting to the database

The xmapConnect() function, called with no parameters, will offer a list of available
databases, allowing you to select the appropriate one. Alternatively, the name of the
database can be provided directly, if known (e.g. xmapConnect(“human”)).

6 Translation routines for genes, transcripts, exons

and probesets

The X:Map database can be queried in a number of ways using translation functions.
All of them have the form X.to.Y, where X and Y may be a vector of gene, transcript,

4

h


exon or probeset identifiers. See, ?mappings for more details. All the functions produce,
by default, a vector of identifiers. More information can be generated by setting the
parameter as.vector to FALSE , in which case a data frame is returned. If unique is
FALSE , duplicates are removed before the result is returned.

> xmapConnect("human")

> sig.exons <- probeset.to.exon(sigs)

> length(sig.exons)

[1] 20

> sig.transcripts <- probeset.to.transcript(sigs)

> length(sig.transcripts)

[1] 12

> sig.genes <- probeset.to.gene(sigs)

> length(sig.genes)

[1] 7

> sig.exons.data.frame <- probeset.to.exon(sigs, as.vector = FALSE)

(These numbers are so small because there are only 7 genes represented in the example
dataset).

Each of these funtions, by default, removes probesets where one or more probes
matches the genome at multiple sites (see the section ’Probeset filtering’, below, for
more details). Setting mt.rm=FALSE prevents this additional filtering.

7 More details

exon.details,transcript.details and gene.details can all be used to extract de-
tailed annotation, given the appropriate set of identifiers.

> exon.details(sig.exons)

> transcript.details(sig.transcripts)

> gene.details(sig.genes)

Note that there is no corresponding function, probeset.details . This is because there
is relatively little useful information to provide about a probeset since it is essentially a
name used to group a set of probes together. The function probeset.to.probe(v,as.vector=FALSE)
can be used to find the locations of each of the probeset’s probes’ genome hits.

5



8 Finding items at specified locations in the genome

A set of functions of the form X.in.range can be used to find all of the probeset between
two points. For example:

> gds <- gene.details(sig.genes)

> x1 <- gds$seq_region_start

> x2 <- gds$seq_region_end

> chr <- gds$name

> strand <- gds$seq_region_strand

> ps <- mapply(probesets.in.range, x1, x2, strand, chr)

gives us back a list of character vectors, one for each gene, containing the probesets
within that gene’s region.

> length(ps)

[1] 7

> class(ps)

[1] "list"

> sapply(ps, length)

[1] 523 73 27 154 187 271 267

> ps[[1]][1:10]

[1] "3102373" "3102369" "3102370" "3102371" "3889483" "3767204" "3431978"

[8] "3102374" "3973017" "3818668"

9 Genes,exons and probesets in a single query

Often we want to find all the probesets hitting a gene’s exons. The function gene.to.exon.probeset
is designed to do this quickly (it is implemented as a stored procedure on the database
server).

> gene.mappings <- gene.to.exon.probeset(sig.genes)

This gives us back a data.frame - and these are the first 10 rows:

> gene.mappings[1:10, ]

6



gene exon probeset_id probeset_name probe_count

1 ENSG00000137573 ENSE00000697174 635026 3102398 4

2 ENSG00000137573 ENSE00000697198 635033 3102405 4

3 ENSG00000137573 ENSE00000697200 635040 3102412 4

4 ENSG00000137573 ENSE00000980794 635058 3102430 4

5 ENSG00000137573 ENSE00000980794 635059 3102431 4

6 ENSG00000137573 ENSE00000980797 635065 3102437 4

7 ENSG00000137573 ENSE00000980803 635073 3102445 4

8 ENSG00000137573 ENSE00001191942 635088 3102460 4

9 ENSG00000137573 ENSE00001191942 635089 3102461 4

11 ENSG00000137573 ENSE00001191942 635091 3102463 4

The function gene.to.exon.probeset.exprs does the same, but also takes an Ex-

pressionSet as an argument. It extracts the relevant rows from this and prepends ito
the annotation data to generate a table containing both expression data and annotation.

10 Probeset filtering

Probesets can be filtered according to the number and quality of their matches to the
genome. Match statistics can be displayed with probeset.stats.

> probeset.stats(ps[[1]][1:5])

probeset_id probeset hitScore exonScore geneScore

1 635001 3102373 1 1 1

2 634998 3102369 1 0 1

3 634999 3102370 1 0 1

4 635000 3102371 1 0 1

5 1277261 3889483 101 0 25

The hit, exon and gene scores are calculated using all the probes in the probesets
(usually 4), by finding how many times they match to the genome, to exons, and to
genes - and then multiplying the minimum value for the probe within a probeset with the
maximum. Thus the first probeset in the example is “exonic” as it matches the genome
1 time and only matches 1 gene and 1 exon. The second one is “intronic” because not all
its probes hit an exon and the fifth one is a “multitarget” probeset because it includes
at least one probe that matches many locations in the genome.

These four types of probesets can be selected or excluded from a probeset list us-
ing the select.probewise and exclude.probewise functions. For example, to find
probesets that hit within genes, but outside regions annotated as exons by ensembl:

> select.probewise(sigs, filter = "intronic")

7



[1] "3388403"

In a similar way, a probeset list can be filtered to get rid of multiply targeting
probesets (i.e. those annotated by X:Map to hit in more than one place on the genome):

> sigs.nomt <- exclude.probewise(sigs, filter = "multitarget")

The functions is.exonic,is.intronic,is.intergenic and is.multitarget pro-
vide a way of testing each probeset (rather than filtering the list) and the functions
exonic,intronic,intergenic and multitarget also exist (for consistency) and pro-
vide exactly the same functionality as select.probewise and exclude.probewise.

> is.intronic(sigs)

3102398 3102391 3102439 3102381 3102419 3102412 3102447 3102405 2906895 2906891

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3933543 3933539 3933542 3933538 2974595 2974598 2974597 2974596 3945601 3388376

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3388408 3388379 3388382 3388414 3388375 3388407 3388403 3388393 3388380 3388412

FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

3388383

FALSE

> intronic(sigs)

[1] "3388403"

11 Plotting genes of interest

plotGene provides plots of the transcript and exon structure of a given gene, coloured
by expression data.

In order to compute the values that go into the plot, one or more groups is supplied
as a list, using the parameter gps (note that this has changed slightly since the last
release of the package). Each element in gps is a vector of indices into the expression
data in data.

So, for example,

> plotGene("ENSG00000141510", x.rma, gps = list(1:3, 4:6), type = "mean-fc")

7515000 7520000 7525000 7530000

TP53 <

ENSG00000141510

ENST00000269305

ENSE00001255952

ENST00000396473

ENSE00001525072

ENST00000359597

−5 −2.5 0 2.5 5

8



will compute the fold changes between arrays 1:3 and 4:6.
Alternatively, the arrays to be compared can be defined using the ExpressionSet ’s

annotation data, in the same way as pc, so:

> plotGene("ENSG00000141510", x.rma, gps = c("a", "b"), group = "group",

+ type = "mean-fc")

will also work.
All well behaving exon-matching probesets are found, and the mean value used to

colour the plot. The process is repeated for each transcript and each exon. Transcripts
aren’t coloured, and the mean value for the gene is shown as a bar running across the
top of the plot.

The approach to averaging can be changed and, raw intensities can plotted instead
(see ?plotGene for more details). It is also possible to pre-scale the colouring to the
average for the gene (averaged over all the exons), so that data is coloured relative to
the gene-average (using the parameter scale.to.gene).

By default, exons with no matching probesets (following filtering for multi-targeting
probesets) are coloured white.

> par(mfrow = c(3, 1))

> plotGene("ENSG00000112559", x.rma, gps = list(1:3, 4:6), type = "mean-fc",

+ scale.to.gene = TRUE)

> plotGene("ENSG00000112559", x.rma, gps = list(1:3), type = "mean-int",

+ col = heat.colors(16))

> plotGene("ENSG00000112559", x.rma, gps = list(4:6), type = "mean-int",

+ col = heat.colors(16))

41715000 41720000 41725000

MDFI >

ENSG00000112559

ENST00000373051

ENSE00001459414

ENST00000230321

ENSE00001377655

ENST00000373050

ENSE00001377655

−2.5 0 2.5 5

41715000 41720000 41725000

MDFI >

ENSG00000112559

ENST00000373051

ENSE00001459414

ENST00000230321

ENSE00001377655

ENST00000373050

ENSE00001377655

4 8 12 16

41715000 41720000 41725000

MDFI >

ENSG00000112559

ENST00000373051

ENSE00001459414

ENST00000230321

ENSE00001377655

ENST00000373050

ENSE00001377655

4 8 12 16

Another utility to visualize the expression of a gene is gene.graph. It creates a
line-plot for a specified gene, including intronic probesets. For example:

9



> par(mfrow = c(3, 2))

> gene.graph("ENSG00000112559", x.rma, gps = list(1:3, 4:6), type = "mean-fc",

+ gp.col = "red")

> gene.graph("ENSG00000112559", x.rma, gps = list(1:3, 4:6), type = "mean-int",

+ gp.col = c("red", "orange"))

> gene.graph("ENSG00000112559", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = 1:6)

> gene.graph("ENSG00000112559", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = 1:6, by.order = TRUE)

> gene.graph("ENSG00000112559", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = 1:6, by.order = TRUE, show.introns = TRUE)

> gene.graph("ENSG00000112559", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = c(rep("red", 3), rep("orange",

+ 3)), gp.pch = c(1, 1, 1, 2, 2, 2), gp.lty = c(1, 1, 1, 2,

+ 2, 2), by.order = TRUE, show.introns = TRUE, exon.bg.col = NA)

41715000 41720000 41725000

−
4

−
2

0
2

4

gene

MDFI >

fo
ld

 c
ha

ng
e

41715000 41720000 41725000

4
6

8
10

gene

MDFI >

in
te

ns
ity

41715000 41720000 41725000

4
6

8
10

gene

MDFI >

in
te

ns
ity

0 2 4 6 8

4
6

8
10

gene

MDFI >

in
te

ns
ity

0 5 10 15

4
6

8
10

gene

MDFI >

in
te

ns
ity

0 5 10 15

4
6

8
10

gene

MDFI >

in
te

ns
ity

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Heatmap style plots can also be generated with the function gene.strip.

> all.genes <- probeset.to.gene(featureNames(x.rma))

> gene.strip(all.genes, x.rma, list(1:3, 4:6), type = "mean-fc")

10



5 10 15 20

TP53 <

SULF1 >

MDFI >

TFF3 <

VNN1 <

APOBEC3D >

PGR <

gene.strip

Exon Number

ge
ne

s

−5 −2.5 0 2.5 5

Here, each row corresponds to a gene, and each exon is plotted in exon-order along
the X axis. The plot is coloured as before; exons for which a uniquely matching probeset
cannot be found are, by default, coloured white. When multiple probesets hit the same
exon, these are stacked vertically within that exon’s rectangle.

Alternatively, plots could be coloured by intensity:

> par(mfcol = c(2, 1))

> gene.strip(all.genes, x.rma, list(1:3), type = "median-int",

+ col = heat.colors(16), main = "MCF7")

> gene.strip(all.genes, x.rma, list(4:6), type = "median-int",

+ col = heat.colors(16), main = "MCF10a")

11



5 10 15 20

TP53 <

SULF1 >

MDFI >

TFF3 <

VNN1 <

APOBEC3D >

PGR <

MCF7

Exon Number

ge
ne

s

0 4 8 12 16

5 10 15 20

TP53 <

SULF1 >

MDFI >

TFF3 <

VNN1 <

APOBEC3D >

PGR <

MCF10a

Exon Number

ge
ne

s

0 4 8 12 16

The parameter show.introns can be used to change the plotting behaviour so that
introns are shown, and exons are positioned relative to their nucleotide position within
the gene.

> gene.strip(sig.genes, x.rma, list(1:3, 4:6), type = "mean-fc",

+ show.introns = TRUE)

50000 100000 150000

SULF1 >
MDFI >
TFF3 <

VNN1 <
APOBEC3D >

PGR <

gene.strip

Nucleotide Position

ge
ne

s

−5 −2.5 0 2.5 5

12 Splicing index and splicing ANOVA

Splicing index and splicing ANOVA have also been implemented as described in the
Affymetrix white paper: “Alternative transcript analysis methods for exon arrays”.

The splicing index gives a measure of the difference in expression level for each
probeset in a gene between two sets of arrays, relative to the gene-level average in each
set. This is calculated only for those probesets that are defined as exon targeting and

12



non-multitargetted (See select.probewise and exclude.probewise for more details of how
this filtering is performed.

As before, the two sets of arrays to comapare can be specified either as a list:
...,gps=list(1:3,4:6),..., or by using the annotation data: ...,gps=c(’a’,’b’),group=’groups’,....

The implementation also calculates a p.value and t.statistic for each probeset; these
are returned alongside the splicing index, and the overall gene level average is also
provided.

By default, the splicing index is calculated using the mean across genes and samples,
specifing median.gene=TRUE will use the median instead. It is calculated using the
unlogged data, unless unlogged=FALSE . This only affects the internal calculations -
values in x are always assumed to be logged, and the splicing index is always returned
on the log2 scale.

> si <- si(x.rma, c("ENSG00000141510", "ENSG00000082175"), group = "group",

+ gps = c("a", "b"))

splanova is an implementation of the MIDAS approach suggested by Affymetrix, also
described in the above whitepaper. It produces an object with F-values and significance
of alternative splicing, for each probeset and treatment in a multi-treatment experiment.

13 ESTs, in silico predictions etc...

Mappings can also be performed against the EST and prediction subsets of Ensembl. For
this the other features database must be installed as well (see the Installation Instructions
for more information). The subset to search against is defined by setting the subset
parameter of the appropiate X.to.Y function:

> ps <- probesets.in.range(7497600, 7516800, -1, "17")

> ps <- multitarget(ps, exclude = TRUE)

> exonic(ps)

[1] "3743908" "3743909" "3743912"

> intronic(ps)

[1] "3743910" "3743911"

> probeset.to.exon(ps, subset = "core")

[1] "ENSE00001255952" "ENSE00001525072" "ENSE00001255878" "ENSE00001525080"

> probeset.to.exon(ps, subset = "est")

13



[1] "ENSESTEE00000225869" "ENSESTEE00000225868"

> probeset.to.exon(ps, subset = "prediction")

[1] 143942 143940

> probeset.to.transcript(ps, subset = "core")

[1] "ENST00000269305" "ENST00000396473"

> probeset.to.transcript(ps, subset = "est")

[1] "ENSESTTT00000065754" "ENSESTTT00000065756" "ENSESTTT00000065757"

> probeset.to.transcript(ps, subset = "prediction")

[1] 25802

> probeset.to.gene(ps, subset = "core")

[1] "ENSG00000141510"

> probeset.to.gene(ps, subset = "est")

[1] "ENSESTGG00000027012" "ENSESTGG00000027014"

Note that probeset.to.gene doesn’t provide a mapping for the “prediction” subset,
since it stores transcript, not gene predictions.

Predictions are also slightly different from the core and est subsections because they
are represented by IDs, not strings (see the result of probeset.to.transcript(ps,subset=”prediction”),
for example.

14 Putting it all together

A typical workflow for analysing exon array data using exonmap might be to first identify
differentially expressed probesets, using whatever standard techniques might be applied
to previous generation arrays - for example, preprocessing using RMA, generating fold
changes and filtering using an FDR moderated threshold.

This yields a set of significant probesets. Exonmap can then be used to map these to
the exons they target - yielding a list of exons in which at least one probeset is significant.

These exons can then be mapped to genes, and visualised individually, or filtered
using global methods such as the splicing index. Global plots can be generated, and
interesting genes pursued further via X:Map.

This translates into relatively little code:- we pick it up after initial preprocessing,
and in this example, use only the minimal data set supplied with the package. i.e. x.rma
contains (a small set) of normalized and preprocessed expression data for two cell lines,
“a” and “b”. We also do a trivial filtering based on fold change and unadjusted p-value,
rather than something more sophisticated using, for example limma.

Then we:

14



1. Remove mulittarget probesets

2. Map to exons

3. Map to genes

4. Generate splicing index

5. Partition by average fold change for the genes

6. plot, ordered by splicing index

7. repeat plots with genes scaled to gene level average

> pData(x.rma)

sample group

ex1MCF7_r1.CEL 1 a

ex1MCF7_r2.CEL 2 a

ex1MCF7_r3.CEL 3 a

ex2MCF10A_r1.CEL 4 b

ex2MCF10A_r2.CEL 5 b

ex2MCF10A_r3.CEL 6 b

> pc.exonmap <- pc(x.rma, "group", c("a", "b"))

> sigs <- names(fc(pc.exonmap))[(abs(fc(pc.exonmap)) > 1) & (tt(pc.exonmap) <

+ 1e-04)]

> sigs <- exonic(sigs)

> e <- probeset.to.exon(sigs)

> g <- exon.to.gene(e)

> r <- si(x.rma, g, gps = list(1:3, 4:6))

> g <- intersect(g, names(r))

> r <- r[g]

At this point we have a list of genes containing at least one significant exon tarageting
probeset, and their splicing index.

We can then calculate the maximum splicing index and retrieve the average fold
change for each gene. These are then used to partition the dataset into (on average) up-
and down- regulated genes. We can sort each set by the maximum splicing index and
plot separate gene.strip plots for each set.

> max.si <- sapply(r, function(a) {

+ max(abs(a$si))

+ })

> gene.av <- sapply(r, function(a) {

15



+ max(a$gene.av)

+ })

> up <- gene.av > 0

> par(mfrow = c(2, 1))

> o <- order(max.si[up], decreasing = TRUE)

> gene.strip(g[up][o], x.rma, list(1:3, 4:6), type = "mean-fc",

+ main = "up")

> o <- order(max.si[!up], decreasing = TRUE)

> gene.strip(g[!up][o], x.rma, list(1:3, 4:6), type = "mean-fc",

+ main = "down")

5 10 15 20

TFF3 <

SULF1 >

PGR <

up

Exon Number

ge
ne

s

−5 −2.5 0 2.5 5

1 2 3 4 5 6 7 8

VNN1 <

MDFI >

down

Exon Number

ge
ne

s

−5 −2.5 0 2.5 5

It can also be useful to compare these plots to those produced when each gene is
scaled to the gene-average fold change:

> par(mfrow = c(2, 1))

> o <- order(max.si[up], decreasing = TRUE)

> gene.strip(g[up][o], x.rma, list(1:3, 4:6), type = "mean-fc",

+ main = "up, scaled", scale.to.gene = TRUE)

> o <- order(max.si[!up], decreasing = TRUE)

> gene.strip(g[!up][o], x.rma, list(1:3, 4:6), type = "mean-fc",

+ main = "down, scaled", scale.to.gene = TRUE)

16



5 10 15 20

TFF3 <

SULF1 >

PGR <

up, scaled

Exon Number

ge
ne

s

−5 −2.5 0 2.5 5

1 2 3 4 5 6 7 8

VNN1 <

MDFI >

down, scaled

Exon Number

ge
ne

s

−5 −2.5 0 2.5 5

17


	Introduction
	Initial processing of exon array data
	Reading in data and generating expression calls 
	Pairwise comparison of expression data
	Connecting to the database
	Translation routines for genes, transcripts, exons and probesets
	More details
	Finding items at specified locations in the genome
	Genes,exons and probesets in a single query
	Probeset filtering
	Plotting genes of interest
	Splicing index and splicing ANOVA
	ESTs, in silico predictions etc...
	Putting it all together

