
Using crlmm for copy number estimation and genotype calling with

Illumina platforms

Rob Scharpf

September 27, 2010

Allele-specific copy number estimation in the crlmm package is available for several Illumina platforms.
As described in the copynumber vignette, copy number estimation in crlmm works best when there are a
sufficient number of samples such that AA, AB, and BB genotypes are observed at most loci. For small
studies (e.g., fewer than 50 samples), there will be a large number of SNPs that are monomorphic. For
monomorphic SNPs, the estimation problem becomes more difficult and alternative strategies that estimate
the relative total copy number may be preferable. In addition to installing crlmm, one must also install the
appropriate annotation package for the Illumina platform. In the following code, we list the platforms for
which annotation packages are currently available. Next we create a directory where output files will be
stored and indicate the directory that contains the IDAT files that will be used in our analysis.

> library(crlmm)

> crlmm:::validCdfNames()

[1] "genomewidesnp6" "genomewidesnp5"
[3] "human370v1c" "human370quadv3c"
[5] "human550v3b" "human650v3a"
[7] "human610quadv1b" "human660quadv1a"
[9] "human1mduov3b" "humanomni1quadv1b"
[11] "humanomniexpress12v1b"

> if (getRversion() < "2.12.0") {

rpath <- getRversion()

} else rpath <- "trunk"

> outdir <- paste("/thumper/ctsa/snpmicroarray/rs/ProcessedData/crlmm/",

rpath, "/illumina_vignette", sep = "")

> datadir <- "/thumper/ctsa/snpmicroarray/illumina/IDATS/370k"

To perform copy number analysis on the Illumina platform, several steps are required. The first step is to
read in the IDAT files and create a container for storing the red and green intensities. These intensities are
quantile normalized in the function crlmmIllumina, and then genotyped using the crlmm algorithm. Details
on the crlmm genotyping algorithm are described elsewhere. It is important to specify save.it = TRUE
and provide output files to store the quantile normalized intensities. We will make use of the normalized
intensities when we estimate copy number. The object returned by crlmmIllumina in an instance of the
SnpSet class, a container for storing the genotype calls and the genotype confidence scores. The genotype
confidence scores are saved as an integer, and can be converted back to a [0, 1] probability scale by the
transformation round(−1000 ∗ log2(1 − p)). At this point, one may want to extract the scan date of the
arrays for later use. The scan dates can be pulled from the RG object and added to the SnpSet returned by
crlmmIllumina as illustrated below.

> samplesheet = read.csv(file.path(datadir, "HumanHap370Duo_Sample_Map.csv"),

header = TRUE, as.is = TRUE)

> samplesheet <- samplesheet[-c(28:46, 61:75, 78:79), ]

> arrayNames <- file.path(datadir, unique(samplesheet[,

1



"SentrixPosition"]))

> grnfiles = all(file.exists(paste(arrayNames, "_Grn.idat",

sep = "")))

> redfiles = all(file.exists(paste(arrayNames, "_Red.idat",

sep = "")))

> RG <- readIdatFiles(samplesheet, path = dirname(arrayNames[1]),

arrayInfoColNames = list(barcode = NULL, position = "SentrixPosition"),

saveDate = TRUE)

> crlmmResult <- crlmmIllumina(RG = RG, cdfName = "human370v1c",

sns = pData(RG)$ID, returnParams = TRUE, cnFile = file.path(outdir,

"cnFile.rda"), snpFile = file.path(outdir, "snpFile.rda"),

save.it = TRUE)

> protocolData(crlmmResult)$ScanDate <- protocolData(RG)$ScanDate

> range(protocolData(crlmmResult)$ScanDate)

> rm(RG)

> gc()

Finally, we load a few of the intermediate files that were created during the preprocessing and genotyping.

> load(file.path(outdir, "snpFile.rda"))

> res <- get("res")

> load(file.path(outdir, "cnFile.rda"))

> cnAB <- get("cnAB")

> load(file.path(outdir, "crlmmResult.rda"))

After running the crlmm algorithm, we construct a container for storing the quantile normalized inten-
sities, genotype calls, and allele-specific copy number estimates. As not all of these functions have been
exported in this release, please use the ::: operator as indicated. Documentation of these functions will be
available in future versions of crlmm.

> if (!exists(file.path(outdir, "cnSet.rda"))) {

fD <- crlmm:::constructFeatureData(c(res$gns, cnAB$gns),

cdfName = "human370v1c")

new.order <- order(fD$chromosome, fD$position)

fD <- fD[new.order, ]

aD <- crlmm:::constructAssayData(cnAB, res, crlmmResult,

order.index = new.order)

protocolData(crlmmResult)$batch <- vector("integer",

ncol(crlmmResult))

container <- new("CNSetLM", assayData = aD, phenoData = phenoData(crlmmResult),

protocolData = protocolData(crlmmResult), featureData = fD,

annotation = "human370v1c")

}

As described in the copynumber vignette, two R functions for copy number estimation are available:
crlmmCopynumber and crlmmCopynumber2. The latter requires that the assay data elements are represented
using ff objects. As the dataset for this vignette is small (43 arrays) and the above steps did not make
use of the ff features, constructing ff objects at this point in the analysis would serve little purpose. The
decision to use ordinary matrices or ff objects should be decided at the beginning of the analysis and then
propogated to both the genotyping and copy number estimation steps. Here, we use the crlmmCopynumber
to estimate copy number.

> cnSet <- crlmmCopynumber(container, verbose = TRUE)

2



Accessors for extracting the locus-level copy number estimates. As an example of how to use
accessors to obtain the allele-specific CN estimates, the following code chunk extracts the allele-specific copy
number for polymorphic markers on chromosome 21.

> marker.index <- which(chromosome(cnSet) == 21 & isSnp(cnSet))

> ca <- CA(cnSet)[marker.index, ]/100

> cb <- CB(cnSet)[marker.index, ]/100

> missing.index <- which(rowSums(is.na(ca)) == ncol(cnSet))

> ca <- ca[-missing.index, ]

> cb <- cb[-missing.index, ]

Negating the isSnp function could be used to extract the estimates at nonpolymorphic markers. For instance,

> np.index <- which(chromosome(cnSet) == 21 & !isSnp(cnSet))

> cn.monomorphic <- CA(cnSet)[np.index, ]/100

At polymorphic loci, the total copy number is the sum of the number of copies of the A allele and the
number of copies for the B allele. At nonpolymorphic loci, the total copy number is the number of copies
for the A allele. The helper function totalCopyNumber can be used to extract the total copy number for all
polymorphic and nonpolymorphic markers. Documentation of the totalCopyNumber will be available in a
future version of crlmm.

> cn.total <- ca + cb

> cn.total2 <- crlmm:::totalCopyNumber(cnSet, i = marker.index)

> cn.total2 <- cn.total2[-missing.index, ]

> stopifnot(all.equal(cn.total2, cn.total))

> cn.monomorphic2 <- crlmm:::totalCopyNumber(cnSet, i = np.index)

> stopifnot(all.equal(cn.monomorphic, cn.monomorphic2))

A few simple visualizations may be helpful at this point. The first plot is a histogram of the signal to
noise ratio of the sample – an overall measure of how well the genotype clusters separate. (This statistic
tends to be much higher for Illumina than for the Affymetrix platforms.) The second is a visualization of
the total copy number estimates plotted versus physical position on chromosome 1 for the two samples with
the lowest (top) and highest (bottom) signal to noise ratios.

> hist(cnSet$SNR, breaks = 15)

3



Histogram of cnSet$SNR

cnSet$SNR

F
re

qu
en

cy

18 20 22 24 26 28 30

0
1

2
3

4
5

6
7

Here’s a very simple approach to handle outliers by applying a running median using a window of size 3.
Following outlier removal, we suggest applying a wave correction to adjust for more global waves followed
by a segmentation or hidden markov model.

> cn <- cn[!is.na(cn)]

> y <- as.numeric(runmed(cn, k = 3))

Session information

> toLatex(sessionInfo())

� R version 2.11.1 RC (2010-05-27 r52117), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=C, LC_MESSAGES=en_US.iso885915,
LC_PAPER=en_US.iso885915, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.iso885915, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.8.0, crlmm 1.6.5, oligoClasses 1.10.0

� Loaded via a namespace (and not attached): affyio 1.16.0, annotate 1.26.0, AnnotationDbi 1.10.1,
Biostrings 2.16.5, bit 1.1-4, DBI 0.2-5, ellipse 0.3-5, ff 2.1-4, genefilter 1.30.0, IRanges 1.6.6,
mvtnorm 0.9-9, preprocessCore 1.10.0, RSQLite 0.9-1, splines 2.11.1, survival 2.35-8, xtable 1.5-6

4



> low.snr <- which(cnSet$SNR == min(cnSet$SNR))

> high.snr <- which(cnSet$SNR == max(cnSet$SNR))

> x <- position(cnSet)[marker.index]

> x <- x[-missing.index]

> par(mfrow = c(2, 1), las = 1, mar = c(0.5, 4, 0.5, 0.5),

oma = c(4, 1, 1, 1))

> for (j in c(low.snr, high.snr)) {

cn <- cn.total[, j]

cn[cn < 0.05] <- 0.05

plot(x, cn, pch = ".", ylab = "copy number", xaxt = "n",

ylim = c(0, 6))

}

> axis(1, at = pretty(x), labels = pretty(x/1e+06))

> mtext("Mb", 1, outer = TRUE, line = 2)

0

1

2

3

4

5

6

x

co
py

 n
um

be
r

0

1

2

3

4

5

6

x

co
py

 n
um

be
r

10 20 30 40

Mb

Figure 1: Copy number plotted against physical position for a sample with high SNR (top) and a sample
with low SNR (bottom).

5


