
baySeq: Empirical Bayesian analysis of patterns

of differential expression in count data

Thomas J. Hardcastle

April 22, 2010

1 Introduction

This vignette is intended to give a rapid introduction to the commands used in
implementing two methods of evaluating differential expression in Solexa-type,
or count data by means of the baySeq R package. For fuller details on the meth-
ods being used, consult Hardcastle & Kelly [1]. The major improvement made
in this release is the option to include region length in evaluating differential
expression between genomic regions (e.g. genes). See Section 7 for more details.

We assume that we have discrete data from a set of sequencing or other high-
throughput experiments, arranged in a matrix such that each column describes a
sample and each row describes some entity for which counts exist. For example,
the rows may correspond to the different sequences observed in a sequencing
experiment. The data then consists of the number of times each sequence is
observed in each sample. We wish to determine which, if any, rows of the data
correspond to some patterns of differential expression across the samples. This
problem has been addressed for pairwise differential expression by the edgeR [2]
package.

However, baySeq takes an alternative approach to analysis that allows more
complicated patterns of differential expression than simple pairwise comparison,
and thus is able to cope with more complex experimental designs. We also
observe that the methods implemented in baySeq perform at least as well, and
in some circumstances considerably better than those implemented in edgeR [1].

baySeq uses empirical Bayesian methods to estimate the posterior likelihoods
of each of a set of models that define patterns of differential expression for each
row. This approach begins by considering a distribution for the row defined
by a set of underlying parameters for which some prior distribution exists. By
estimating this prior distribution from the data, we are able to assess, for a given
model about the relatedness of our underlying parameters for multiple libraries,
the posterior likelihood of the model.

In forming a set of models upon the data, we consider which patterns are
biologically likely to occur in the data. For example, suppose we have count
data from some organism in condition A and condition B. Suppose further that
we have two biological replicates for each condition, and hence four libraries
A1, A2, B1, B2, where A1, A2 and B1, B2 are the replicates. It is reasonable to
suppose that at least some of the rows may be unaffected by our experimental
conditions A and B, and the count data for each sample in these rows will
be equivalent. These data need not in general be identical across each sample

1

due to random effects and different library sizes, but they will share the same
underlying parameters. However, some of the rows may be influenced by the
different experimental conditions A and B. The count data for the samples
A1 and A2 will then be equivalent, as will the count data for the samples B1

and B2. However, the count data between samples A1, A2, B1, B2 will not be
equivalent. For such a row, the data from samples A1 and A2 will then share
the same set of underlying parameters, the data from samples B1 and B2 will
share the same set of underlying parameters, but, crucially, the two sets will not
be identical.

Our task is thus to determine the posterior likelihood of each model for each
row of the data. We can do this by considering either a Poisson or negative-
binomial distribution upon the sequencing count data. The Possion method is
considerably faster as a closed form conjugate prior exists for this distribution.
The negative-binomial solution is slower as it requires a numerical solution for
the prior, but is probably a better fit for most data. In experimental data,
we have found that the Poisson method is likely to give poor results if true
biological replicates are not available; in most human studies, for example. In
general, therefore, the use of the negative-binomial methods is recommended.

2 Preparation

We begin by loading the baySeq package.

> library(baySeq)

Note that because the experiments that baySeq is designed to analyse are
usually massive, we should use (if possible) parallel processing as implemented
by the snow package. We therefore need to load the snow package (if it exists),
define a cluster and load the baySeq library onto each member of the cluster. If
snow is not present, we can proceed anyway with a NULL cluster. Results may
be slightly different depending on whether or not a cluster is used owing to the
non-deterministic elements of the method.

> if ("snow" %in% installed.packages()[, 1]) {

+ library(snow)

+ cl <- makeCluster(4, "SOCK")

+ } else cl <- NULL

Here we have (if the snow package is installed) defined a cluster of four
processors on sockets; that is to say, on the local machine. If the local machine
has multiple processors this may be a valid method of accelerating baySeq, but if
very large data sets are being analysed we may wish to consider some other form
of parallelisation (e.g. LAM/MPI) that allows processors on multiple nodes to
be used. See the snow documentation for details on how to achieve this.

We load a simulated data set consisting of count data on one thousand counts
and library sizes for ten libraries.

> data(simCount)

> data(libsizes)

> simCount[1:10,]

2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 4 1 5 2 3 0 1 1 1 0
[2,] 1 0 9 6 5 0 1 0 0 1
[3,] 9 2 5 5 14 2 3 1 0 4
[4,] 7 3 8 2 2 0 1 0 1 0
[5,] 2 2 4 7 0 0 0 0 0 1
[6,] 2 1 0 1 0 4 3 5 5 3
[7,] 9 8 8 8 9 1 2 1 0 0
[8,] 9 5 7 8 7 1 2 0 1 2
[9,] 6 2 2 3 0 0 0 0 0 0
[10,] 1 0 2 0 1 3 17 2 2 10

> libsizes

[1] 75373 40153 75403 34285 55975 53287 80477 37655 41171 77510

The data are simulated such that the first hundred counts show differential
expression between the first five libraries and the second five libraries. Our
replicate structure, used to estimate the prior distributions on the data, can
thus be defined as

> replicates <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)

We can also establish two group structures for the data.
Each member (vector) contained within the ’groups’ list corresponds to

one model upon the data. In this setting, a model describes the patterns of
data we expect to see at least some of the tags correspond to. In this sim-
ple example, we expect that some of the tags will be equivalently expressed
between all ten libraries. This corresponds to the ’NDE’ model, or vector
c(1,1,1,1,1,1,1,1,1,1) - all libraries belong to the same group for these
tags.

We also expect that some tags will show differential expression between the
first five libraries and the second five libraries. For these tags, the two sets of
libraries belong to different groups, and so we have the model ’DE’, or vector
c(1,1,1,1,1,2,2,2,2,2) - the first five libraries belong to group 1 and the
second five libraries to group 2. We thus have the following group structure

> groups <- list(NDE = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), DE = c(1,

+ 1, 1, 1, 1, 2, 2, 2, 2, 2))

In a more complex experimental design (Section 1) we might have several
additional models. The key to constructing vectors corresponding to a model is
to see for which groups of libraries we expect equivalent expression of tags.

We note that the group for DE corresponds to the replicate structure. This
will often be the case, but need not be in more complex experimental designs.

The ultimate aim of the baySeq package is to evaluate posterior likelihoods
of each model for each row of the data.

We begin by combining the count data, library sizes and user-defined groups
into a countData object.

> CD <- new("countData", data = simCount, replicates = replicates,

+ libsizes = libsizes, groups = groups)

3

We can also optionally add annotation details into the @annotation slot of
the countData object.

> CD@annotation <- data.frame(name = paste("count", 1:1000, sep = "_"))

3 Poisson-Gamma Approach

We first try to identify the posterior likelihoods of each model for each tag
assuming a Poisson distribution on each tag with a rate that is Gamma dis-
tributed. That is, if Yij is an element of the data where i is the row of the data,
and j is the sample, then

Yij ∼ Poi(θj lj)

where the lj is the library size of sample j (or some other suitable scaling factor)
and

θj ∼ Γ(αj , βj)

The relationships between the αj , βj for each j are determined by the model
being investigated such that, if and only if samples X and Y belong to the same
group, then αX = αY and βX = βY .

We begin by trying to establish the parameters of the Gamma distribution
by bootstrapping from the data and applying maximum likelihood methods.
We are able to adjust the parameters of the bootstrapping; here we take twenty
sets of count data, establish the maximum likelihood Gamma parameters, and
iterate over 1000 cases. In general more than 5000 iterations is recommended
but is used here for speed of calculation.

We then take the mean of the maximum likelihood estimates to acquire a
prior on the rate distribution.

> CDP.Poi <- getPriors.Pois(CD, samplesize = 20, takemean = TRUE,

+ cl = cl)

The calculated priors are stored in the @priors slot of the countData object
produced.

> CDP.Poi@priors

$priors
$priors$NDE
$priors$NDE[[1]]
[1] 1.274190 28204.487818

$priors$DE
$priors$DE[[1]]
[1] 9.936345e-01 2.005718e+04

$priors$DE[[2]]
[1] 1.071952 24986.724537

4

For each model, we get a set of priors. In the Poisson-Gamma approch, we
get, for each group in the model, a pair of parameters which define the Gamma
distribution that we shall use as a prior distribution for the rates of the Poisson
distributions that describe how many counts we see in each row of the data.
Thus, in the model of differential expression, there are two groups in the data
and we find two sets of parameters.

Having acquired a set of prior distributions on the rate parameter of the
Poisson distribution, we can calculate the posterior likelihoods of each model
for each tag. We need to either provide an initial prior likelihood on each model
via the prs parameter, or provide some other means of estimating the prior
likelihood on the model. If ’pET = “BIC” then the prior likelihood on each
model will be estimated from the Bayesian Information Criterion, and the ’prs’
parameter is not necessary (and will be ignored).

> CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, pET = "BIC", cl = cl)

> CDPost.Poi@estProps

NDE DE
0.6835688 0.3164312

> CDPost.Poi@posteriors[1:10,]

NDE DE
[1,] -2.445109 -9.070917e-02
[2,] -6.921181 -9.871512e-04
[3,] -5.273955 -5.136475e-03
[4,] -7.510238 -5.476007e-04
[5,] -4.978730 -6.906592e-03
[6,] -3.250291 -3.953422e-02
[7,] -16.039593 -1.081667e-07
[8,] -9.778648 -5.664996e-05
[9,] -5.714065 -3.304690e-03
[10,] -10.191890 -3.747369e-05

> CDPost.Poi@posteriors[101:110,]

NDE DE
[1,] -0.2004772361 -1.705619123
[2,] 0.0000000000 -35.539787903
[3,] -0.1319280436 -2.090737547
[4,] -0.1018535009 -2.334714296
[5,] -0.0004798705 -7.642234268
[6,] -0.1591869874 -1.916213609
[7,] -0.3361409721 -1.253591610
[8,] -6.0948962900 -0.002256889
[9,] -0.1510126003 -1.964948280
[10,] -0.0683643507 -2.716891226

The estimated posterior likelihoods for each model are stored in the natural
logarithmic scale in the @posteriors slot of the countDataPosterior. The
nth column of the posterior likelihoods matrix corresponds to the nth model as
listed in the group slot of CDPost.Poi.

Here the assumption of a Poisson distribution gives an estimate of

5

DE
0.3164312

as the proportion of differential expressed counts in the simulated data, where
in fact the proportion is known to be 0.1.

4 Negative-Binomial Approach

We next try the same analysis assuming a Negative Binomial distribution on
the data. We first estimate an empirical distribution on the parameters of the
Negative Binomial distribution by bootstrapping from the data, taking individ-
ual counts and finding the quasi-likelihood parameters for a Negative Binomial
distribution. By taking a sufficiently large sample, an empirical distribution
on the parameters is estimated. A sample size of around 10000 iterations is
suggested, depending on the data being used), but 1000 is used here to rapidly
generate the plots and tables.

> CDP.NBML <- getPriors.NB(CD, samplesize = 1000, estimation = "QL",

+ cl = cl)

The calculated priors are stored in the @priors slot of the countData object
produced as before. For the negative-binomial method, we are unable to form
a conjugate prior distribution. Instead, we build an empirical prior distribution
which we record in the list object $priors of the slot @priors. Each member
of this list object corresponds to one of the models defined by the group slot
of the countData object and contains the estimated parameters for each of the
individual counts selected under the models. The vector $sampled contained
in the slot @priors describes which rows were sampled to create these sets of
parameters.

We then acquire posterior likelihoods as before, estimating the proportions
of differentially expressed counts. We can repeatedly bootstrap the prior esti-
matation to improve accuracy; here three bootstraps are used.

> CDPost.NBML <- getLikelihoods.NB(CDP.NBML, pET = "BIC", cl = cl)

.

> CDPost.NBML@estProps

[1] 0.7756488 0.2243512

> CDPost.NBML@posteriors[1:10,]

NDE DE
[1,] -1.403657 -0.281961040
[2,] -1.766588 -0.187432831
[3,] -1.632115 -0.217553741
[4,] -3.480933 -0.031262284
[5,] -1.311025 -0.314085629
[6,] -1.738875 -0.193242439
[7,] -6.387487 -0.001683896
[8,] -5.155549 -0.005784006
[9,] -1.949987 -0.153472891
[10,] -2.619871 -0.075599181

6

> CDPost.NBML@posteriors[101:110,]

NDE DE
[1,] -0.1508101458 -1.966191
[2,] -0.0001777517 -8.635212
[3,] -0.1303547941 -2.101965
[4,] -0.0440829473 -3.143643
[5,] -0.0150211078 -4.205800
[6,] -0.1360356679 -2.062085
[7,] -0.2038614743 -1.690514
[8,] -0.1300648059 -2.104050
[9,] -0.1664504938 -1.875128
[10,] -0.0271896482 -3.618483

Here the assumption of a Negative Binomial distribution with priors esti-
mated by maximum likelihood gives an estimate of

[1] 0.2243512

as the proportion of differential expressed counts in the simulated data, where
in fact the proportion is known to be 0.1.

5 Results

We can ask for the top differentially expressed tags using the topCounts func-
tion.

> topCounts(CDPost.NBML, group = 2)

name X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Likelihood
1 count_80 1 1 0 1 1 13 21 8 6 20 0.9996228
2 count_78 1 1 0 1 1 8 13 7 9 10 0.9992802
3 count_66 0 0 0 0 0 15 10 4 4 10 0.9989883
4 count_26 13 4 11 5 7 1 1 1 0 0 0.9989096
5 count_21 2 0 1 1 0 15 15 6 5 11 0.9986313
6 count_7 9 8 8 8 9 1 2 1 0 0 0.9983175
7 count_72 0 0 1 0 0 7 6 4 3 8 0.9973797
8 count_83 14 6 9 2 9 1 0 0 1 1 0.9972926
9 count_64 6 6 8 11 9 1 1 0 0 1 0.9966427
10 count_27 5 3 6 4 7 0 0 0 1 0 0.9948027

We can compare the accuracy of the methods by using the getTPs function
to find the number of true positives. We then use this to plot the false positive
rate.

> NBML.TPs <- getTPs(CDPost.NBML, group = 2, TPs = 1:100)

> Poi.TPs <- getTPs(CDPost.Poi, group = 2, TPs = 1:100)

Figure 1 shows that false positive rates for the bootstrapped Negative Bino-
mial approach with maximum likelihood priors (red) are much lower than for
the Poisson-Gamma conjugacy approach (blue). This approach is therefore sig-
nificantly more accurate, although potentially computationally more intensive
and thus slower than the Poisson-Gamma conjugacy.

Finally, we shut down the cluster (assuming it was started to begin with).

7

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Number of counts selected

(L
og

)
Fa

ls
e

P
os

iti
ve

s
Negative Binomial
Poisson−Gamma

Figure 1: (Log) false positive rates for differentially expressed tag discovery in a
simulated dataset using the Poisson-Gamma approach (blue) and the Negative
Binomial approach (red).

> if (!is.null(cl)) stopCluster(cl)

6 More Complex Experimental Designs

To illustrate the way in which a model is specified for more complex experimen-
tal designs, we consider a factorial design containing eight libraries. Table 1
describes the experimental design in more detail. Samples 1, 2, 3 & 4 are from
condition A while samples 5, 6, 7 & 8 are from condition B. However, samples
1, 2, 5 & 6 have also been subjected to some condition C, while samples 3, 4, 7
& 8 have been subjected to some condition D.

Condition A Condition B
Condition C Samples 1, 2 Samples 5, 6
Condition D Samples 3, 4 Samples 7, 8

Table 1: An example factorial design experiment in which samples 1 and 2 are
subjected to experimental conditions A and C, samples 3 and 4 are subjected
to conditions B and C, samples 5 and 6 are subjected to conditions A and C
and samples 7 and 8 are subjected to conditions B and D.

8

We prepare the baySeq library and cluster as before.

> library(baySeq)

> if ("snow" %in% installed.packages()[, 1]) {

+ library(snow)

+ cl <- makeCluster(4, "SOCK")

+ } else cl <- NULL

We load a simulated data set corresponding to the factorial design described.
The first hundred cases show differential expression caused by differences be-
tween condition A and condition B, while the second hundred cases show dif-
ferential expression caused by differences between condition C and condition
D.

> data(factData)

> data(factlibsizes)

We establish our replicate structure, together with three group structures
on the data. We observe that in this case, the replicate structure does not
correspond to any of the group structures.

> replicates <- c(1, 1, 2, 2, 3, 3, 4, 4)

> factgroups <- list(NDE = c(1, 1, 1, 1, 1, 1, 1, 1), DE.A.B = c(1,

+ 1, 1, 1, 2, 2, 2, 2), DE.C.D = c(1, 1, 2, 2, 1, 1, 2, 2))

The first group assumes no differential expression between samples. The
second group assumes differential expression between samples experiencing con-
dition A and samples experiencing condition B. The third group assumes differ-
ential expression between samples experiencing condition C and samples expe-
riencing condition D.

We could also consider the possibility of interactions between effects, by
considering a group c(1,1,2,2,3,3,4,4). However, in this simulated data set,
no such data exists and so we need not consider this group. It should be noted,
however, that such a group would only find that an interaction effect takes place
in some elements of the data. Like an ANOVA test, it is necessary to examine
the data to determine what form the effect takes.

Having established a group structure, we proceed as before.

> CDfact <- new("countData", data = factCount, replicates = replicates,

+ libsizes = factlibsizes, groups = factgroups)

> CDfact@annotation <- data.frame(name = paste("count", 1:1000,

+ sep = "_"))

> CDfactP.NBML <- getPriors.NB(CDfact, samplesize = 1000, estimation = "QL",

+ cl = cl)

> CDfactPost.NBML <- getLikelihoods.NB(CDfactP.NBML, pET = "BIC",

+ cl = cl)

.

> CDfactPost.NBML@estProps

[1] 0.5451340 0.2299319 0.2249341

9

We can then ask for the tags showing most differential expression caused by
the difference between conditions A and B

> topCounts(CDfactPost.NBML, group = 2)

name X1 X2 X3 X4 X5 X6 X7 X8 Likelihood
1 count_94 19 41 19 22 3 2 3 4 0.9998662
2 count_81 6 12 5 10 0 0 0 0 0.9993401
3 count_88 0 0 0 0 10 8 6 8 0.9992040
4 count_41 2 5 4 1 29 11 29 23 0.9990795
5 count_13 2 6 6 6 32 32 59 37 0.9988702
6 count_60 5 14 6 6 0 0 1 0 0.9988108
7 count_49 5 19 14 12 2 1 2 1 0.9979943
8 count_7 0 1 1 0 19 16 9 8 0.9977774
9 count_75 1 4 1 0 30 7 33 14 0.9966735
10 count_95 3 14 13 8 1 0 0 0 0.9966193

And for those tags showing most differential expression caused by the differ-
ence between conditions C and D

> topCounts(CDfactPost.NBML, group = 3)

name X1 X2 X3 X4 X5 X6 X7 X8 Likelihood
1 count_138 3 1 21 23 2 1 29 26 0.9999568
2 count_126 53 78 10 3 47 39 7 6 0.9997064
3 count_161 15 27 1 1 10 15 1 0 0.9996563
4 count_200 18 16 0 1 11 10 1 2 0.9991862
5 count_180 1 2 6 11 0 1 14 15 0.9991334
6 count_155 10 14 40 56 5 12 81 73 0.9985078
7 count_125 2 1 11 8 2 0 19 8 0.9983540
8 count_105 0 3 8 5 0 0 9 8 0.9964886
9 count_166 6 18 1 0 24 15 0 3 0.9952872
10 count_186 9 58 1 3 24 15 3 4 0.9927474

7 Application to Genomic Regions

So far, we have assumed that the count data deals with individual tags from a
sequencing machine. If we consider count data derived from grouping together
tags relating to genomic regions, for example, in looking at the number of tags
that match to a gene in mRNA-Seq, we need to include the region length in the
calculations of differential expression. The reasons for this are clear; if a region
of length 200 bases has 200 tags in sample A and 400 tags in sample B, this
may be good evidence for differential expression. If we saw the same difference
in a region 2e6 bases long, this would be much poorer evidence of differential
expression. We can specify values for the ’@seglens’ slot of the ’countData’ class
to explore such data.

We load a simulated data set consisting of count data on one thousand counts
and library sizes for ten libraries. We use the same library sizes as before, but
now the first column of ’simSeg’ contains the length of the segment.

10

> data(simSeg)

> data(libsizes)

> simSeg[1:10,]

length
[1,] 6385 150 72 87 61 340 16 28 31 6 45
[2,] 15078 455 515 1670 120 449 34 133 34 32 63
[3,] 5577 20 5 11 12 12 106 256 93 47 152
[4,] 25139 808 529 891 1114 2705 135 89 41 37 312
[5,] 16423 86 22 36 15 13 344 802 120 462 857
[6,] 21752 1675 503 1007 193 1033 28 0 10 177 146
[7,] 434 50 19 29 12 59 196 780 50 214 510
[8,] 15370 55 45 75 27 77 210 426 137 216 260
[9,] 43786 2581 1245 2234 940 982 128 644 53 199 257
[10,] 11835 56 26 40 51 55 263 424 441 231 286

> libsizes

[1] 75373 40153 75403 34285 55975 53287 80477 37655 41171 77510

As before, the data are simulated such that the first hundred segments show
differential expression between the first five libraries and the second five libraries.
We thus establish two groups and a replicate structure as before.

> replicates <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)

> groups <- list(NDE = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), DE = c(1,

+ 1, 1, 1, 1, 2, 2, 2, 2, 2))

We now combine the count data, library sizes and user-defined groups into
a countData object as before, but now we additionally specifiy segment lengths
by setting the ’@seglens’ slot.

> SD <- new("countData", data = simSeg[, -1], replicates = replicates,

+ libsizes = libsizes, groups = groups, seglens = simSeg[,

+ 1])

We can also optionally add annotation details into the @annotation slot of
the countData object.

> SD@annotation <- data.frame(name = paste("gene", 1:1000, sep = "_"))

We can calculate the priors for this countData object as before, for both the
Poisson-Gamma method and the Negative Binomial method.

> SDP.NBML <- getPriors.NB(SD, samplesize = 1000, estimation = "QL",

+ cl = cl)

> SDP.Pois <- getPriors.Pois(SD, samplesize = 20, cl = cl)

We can then calculate the posterior likelihoods as before.

> SDPost.Pois <- getLikelihoods.Pois(SDP.Pois, pET = "BIC", cl = cl)

> SDPost.NBML <- getLikelihoods.NB(SDP.NBML, pET = "BIC", cl = cl)

11

.

If we ignore segment length, and merely use the count data, we could acquire
posteriors as before.

> CSD <- new("countData", data = simSeg[, -1], replicates = replicates,

+ libsizes = libsizes, groups = groups)

> CSD@annotation <- data.frame(name = paste("gene", 1:1000, sep = "_"))

> CSDP.NBML <- getPriors.NB(CSD, samplesize = 1000, estimation = "QL",

+ cl = cl)

> CSDPost.NBML <- getLikelihoods.NB(CSDP.NBML, pET = "BIC", cl = cl)

.

> CSDP.Pois <- getPriors.Pois(CSD, samplesize = 20, cl = cl)

> CSDPost.Pois <- getLikelihoods.Pois(CSDP.Pois, pET = "BIC", cl = cl)

If we look at the false discovery rates (Figure 2), we find that the Negative
Binomial method (red) handles data with different segment lengths much better
than the Poisson-Gamma method (blue). We also see that, for the Negative
Binomial method, ignoring segment lengths can have a small negative effect on
the results.

0 20 40 60 80 100

0
1

2
3

4

Number of counts selected

(L
og

)
Fa

ls
e

P
os

iti
ve

s

Negative Binomial (ignoring segment lengths)
Negative Binomial (including segment lengths)
Poisson−Gamma (ignoring segment lengths)
Poisson−Gamma (including segment lengths)

Figure 2: (Log) false positive rates for differentially expressed region discovery
in a simulated dataset using both the Negative Binomial and Poisson-Gamma
methods, including and ignoring segment length data.

12

We are also, using the Negative Binomial methods, able to ask if any seg-
ments have no true expression by setting nullData = TRUE. If the distribution
of rates at each segment is bimodal, this approach will be able to differentiate
between segments which have no true expression of any kind, and those which
have expression (and may be differentially expressed). If we use this option, we
implicitly introduce another grouping. The prs vector, which defines the prior
likelihood of each grouping, should thus sum to less than 1, with the residual
going to the implicit group. We can use this method whether or not segment
lengths are specified; however, to ignore segment length may have a significant
effect on the results.

In the simSeg object, the second hundred rows are simulated to show no
true expression.

> NSDPost.NBML <- getLikelihoods.NB(SDP.NBML, pET = "BIC", nullData = TRUE,

+ bootStraps = 1, cl = cl)

.

> NCSDPost.NBML <- getLikelihoods.NB(CSDP.NBML, pET = "BIC", nullData = TRUE,

+ bootStraps = 1, cl = cl)

.

We can see the top segments for which there is no true expression by setting
group = NULL in the topCounts function. Similarly, we can find true positive
rates for by setting group = NULL in the getTPs function. Figure 3 shows that
neglecting the segment lengths causes a substantial difference in false positive
rates in the analysis of the data negelecting segment lengths (blue) compared
to the analysis of the data including segment length information (red) in the
identification of segments for which there is no true expression.

> topCounts(NSDPost.NBML, group = NULL)

name V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Likelihood
1 gene_139 10 6 13 5 9 10 13 5 11 19 1.0000000
2 gene_106 32 14 22 5 14 19 21 15 15 19 1.0000000
3 gene_194 17 11 16 10 13 7 27 14 4 22 0.9999999
4 gene_169 24 7 8 8 17 16 16 15 13 13 0.9999999
5 gene_108 12 8 14 11 8 9 13 6 9 7 0.9999999
6 gene_199 29 14 30 19 25 7 29 20 10 26 0.9999998
7 gene_181 14 8 6 4 7 7 10 4 2 11 0.9999997
8 gene_101 16 5 5 6 5 5 12 2 2 10 0.9999997
9 gene_115 9 5 22 7 20 8 16 10 14 26 0.9999997
10 gene_168 11 5 15 6 4 12 16 10 11 19 0.9999996

> topCounts(NCSDPost.NBML, group = NULL)

name V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Likelihood
1 gene_128 5 1 5 1 3 5 4 1 3 3 1
2 gene_234 6 1 5 2 4 2 3 3 2 8 1
3 gene_218 6 2 4 0 3 2 5 3 4 5 1
4 gene_548 5 1 3 3 5 6 2 2 2 5 1

13

5 gene_557 4 4 11 3 5 7 6 2 1 7 1
6 gene_890 2 3 4 4 5 3 11 3 1 7 1
7 gene_735 4 2 6 5 8 3 6 4 7 7 1
8 gene_103 8 3 2 3 4 9 8 2 5 4 1
9 gene_193 2 1 1 0 1 3 3 0 1 3 1
10 gene_449 4 3 9 3 3 2 9 2 0 4 1

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Number of counts selected

(L
og

)
Fa

ls
e

P
os

iti
ve

s

Negative Binomial (ignoring segment lengths)
Negative Binomial (including segment lengths)

Figure 3: (Log) false positive rates for discovery of regions with no genuine
expression in a simulated dataset using the the Negative Binomial approach
considering region lengths (solid) and neglecting region lengths (dashed).

In order to look for segments for which there is no true expression, we assume
that the rates of production of tags are bimodally distributed. If this is not the
case, then this approach may cause serious problems in the analysis of the data.
It is possible to gain some idea of whether the rates are bimodally distributed by
examining the priors estimated (by Negative Binomial methods) for a countData
object by using the function plotPriors for some group; ideally, the group
which defines non-differentially expressed data. Figure 4 shows that these data
are truly bimodal and thus this is a sensible approach.

> plotPriors(SDP.NBML, group = 1)

14

−20 −18 −16 −14 −12 −10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Log prior means for group: 1

N = 998 Bandwidth = 0.1829

D
en

si
ty

Figure 4: Density of the (log) values estimated for the mean of the data by
Negative Binomial methods. The data are bimodally distributed, suggesting
that some regions have no true expresssion.

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. Empirical Bayesian methods
for differential expression in count data. In submission. 2009.

[2] Mark Robinson edgeR:’ Methods for differential expression in digital gene
expression datasets. Bioconductor.

15

