
Enabling R packages for web or grid services:

lessons learned

Martin Morgan∗, Nianhua Li, Seth Falcon,
Robert Gentleman,

16 February, 2007

1 Prelude: motivation

There are many reasons for exposing R packages as web or grid services. Main
reasons motivating our work are as follows:

1. Provide standardized workflows. A well-defined web service simplifies and
consolidates complex steps in an analysis into a single service. This stan-
dardizes the analysis so that it is reproducible in the hands of different
users, including users with no R experience.

2. Aid interoperability. Web services require strongly typed service inputs
and outputs, and (strive to) represent data in a language-neutral manner.
Strongly typed data output from an R web service can be used as inputs
to web services written in other languages.

3. Enhance access to powerful analytic methods. R methods and packages
exposed as web services allow the unique strengths of R (e.g., statistical
modeling) to be exposed to and accessed by other programming languages.

4. Access specialized computing resources. Web services separate the com-
puting resources required of the client from those required by the server.
This sets the stage for powerful computing resources to be accessed and
shared by many users.

5. Centralize computing administration, while easing ‘end-user’ maintenance
requirements. The often complex task of maintaining R, including regular
updates to R itself and continual updates to availble packages, can be
managed in a centralized fashion in a way that minimizes disruptions to
the user’s work.

∗Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024 Seattle,
WA 98109

1



6. Leverage Java resources. The large Java community has many active
projects that help to effectively expose R as a web service. These Java
resources range from the core functionality provided by tomcat to the
messaging and queue management facilities of activeMQ.

7. Expose R statistical functionality to Java programmers. Easy facilities for
producing web services from R packages via a Java intermediary means
that the statistical computational abilities of R are more readily accessible
to Java programmers.

2 Overcoming technical issues

A primary technical challenge to offering R packages as web services is to inter-
face the R programming language with XML-based web services.

• We chose to target Java as the initial translation from R, rather than a
more ambitious attempt to write web services functionality for R directly.
Key issues include:

– Pro: This approach provides access to mature Java web service re-
source tools.

– Con: Typically, this introduces a data and service invocation trans-
lation layer (from R to Java, in addition to the translation to XML).
This additional translation layer is not likely to impose a significant
cost in terms of overall execution time, if only because parsing be-
tween native types and XML (a necessary step regardless of strategy)
is typically very slow.

– Con: The available object model (classes and methods) is reduced to
the intersection of R, Java, and XML object models. This requires
that certain R constructs (e.g., class unions) be employed with cau-
tion and that others (e.g., multiple inheritance) be avoided entirely.

• Web services and Java require strongly typed methods and well-defined
data objects. The TypeInfo package provides facilities for strongly typ-
ing R functions and §4 methods. The §4 class system provides enough
structure for well-defined data types. Both TypeInfo and the §4 system
provide language introspection to programmatically translate R methods
into strongly typed Java signatures.

Even with these solutions, many R methods and classes cannot be easily
represented in a way appropriate for web services. S3-style classes do
not contain enough information for language introspection to determine
mapping between R and Java types. The list type translates to Java
Object[], but this is not sufficiently rich for use in a web services context.
A solution is to wrap such data objects as S4 classes.

Conversely, a common data paradigm in Java or XML is a collection of ob-
jects of complex type T. While R might represent this as a list, with each

2



member of the list implicitly of type T, TypeInfo does not provide an id-
iom for recognizing this paradigm and recovering appropriate information
programmatically. A solution is to provide moderate type information in
R (object of type list) and strong typing in Java. An alternative solution
is to recast the data structure in a way that can be strongly typed, e.g., a
list of numeric vectors might be represented as a numeric matrix.

• We use SJava and additonal facilities to accomplish R↔Java data and
method mapping. RWebServices implements two different object models
for base R types.

The robject model more-or-less faithfully represents the underlying struc-
ture of R objects in Java (e.g., a ‘matrix’ is vector of data values, a vector
of dimensions, a type label, facilities for ‘names’ and NA values, etc.).

The javalib model is more faithful to Java data representations; a matrix
must be typed as, e.g., NumericMatrix , and is represented in Java as, e.g.,
column-major double[] and associated dimensions int[]. There are no
provisions for NA or R attributes such as names.

These two different object models have consequences for interoperability
(likely easier to achieve with the javalib model) and representation of
statistical data (better with the robject model).

A second group of technical challenges revolve around service availability
and evaluation.

• The architecture adopted separates Java-based service functionality from
R / Java worker functionality. This means that R does not need to be
available to the web server, simplifying deployment and risks of server-
side exposure to nefarious activities.

• A realistic service model requires ability to manage multiple requests si-
multaneously. We use activeMQ to implement a messaging layer including
customizable queues. activeMQ is deployed separately from the web ser-
vice, e.g., inside a firewall. Computation is performed by R workers. Work-
ers can be dynamically added to the pool, deployed on separate hosts, and
customized to be capable of evaluating one or several services. Workers
are persistent, minimizing service invocation costs.

Insights into additional technical challenges include:

• It is important to be able to conveniently encapsulate the service portion
of RWebServices into other web service containers, e.g., using the intro-
duce tool of caGrid. The architecture of the service side of RWebServices
accomodates this separation.

• Statistical data offers unique challenges, for instance:

– ‘Missing’ or NA values are distinct from non-computable (NaN) or not
representable (e.g., Inf) values. These must be propagated success-
fully, both as input and return values. The robject model facilitates

3



this (at the expense of greater client complexity, to continue the con-
tract of dealing appropriately with NA); the javalib model assumes
(at the risk of a runtime error) that any NA values are removed before
service invocation (client responsibility) and before service return (R
service responsibility).

• Web service methods require programmatic (e.g., brief method and class
description) and user (e.g., detailed desription, interpretation of return
values) documentation. RWebServices parses R man pages for method and
class descriptions, annotating these as javadoc to provide programmatic
documentation, Complete user-level documentation is only available inside
the R package.

3 Adapting to a web services environment

The interative, exploratory aspects of R translate poorly to the stateless and
high-latency web services environment. Lessons learned in addressing this issue
include:

• Construct a coarse workflow granularity. Do this by identifying and con-
solidating common sequences of analytic steps, typically accomplished by
arranging a sequence of R package function calls into a logcial workflow.
Enhance the utility of the workflow by selectively exposing parameters
available for manipulation – this represents the transition from R research
software to web-based service.

• Simplify result types. Many R functions rely on side-effects (e.g., plots),
but these are not useful for subsequent computation. Detailed results are
sometimes only useful within R. In these cases it is appropriate to simplfy
result types to emphasize computable data.

• Imprimatur of scientific authority. R’s pre-eminence as a research tool
means that exploratory or experimental methods may be implemented,
but these are often not appropriate for general or uncritical use. The
services exposed need to be vetted to include only scientifically sound and
established methods.

4 Future opportunities

Lessons learned during this project point to several future opporutnities.

• Implementing stateful services represents an opportunity to reduce data
latency and restore some sense of interactive analysis. For instance, state-
ful services might facilitate services returning data for subsequent analysis,
and services for return of non-computable results like plots.

4



• Separating analytic services from the clients using them places an inter-
pretive burden on the client. For instance, an R user might combine input
and output data into a figure, and use this to visually assess and guide
subsequent analyses. This requires knowledge about how to appropriately
superpose input and output data, in addition to the tools to do this. These
tools are implicit in R, but must be made explicitly available in the client.
Possible solutions include:

– Burden lies with client. This solution requires that the client be
programmed to interpret results, rather than merely retrieve them.

– Service returns complex data objects (e.g., a graphical summary of
input and output, in addition to output data). The client can access
parts of the object as appropriate for subsequent workflow, but needs
to decompose the returned structure appropriately. Sufficiently com-
plex return types could be difficult to document in a semantically
meaning way.

– User interacts repeatedly with stateful services. This solution re-
quires that the client maintain a sense of state, and offers the user
an indication of dependencies amongst services (e.g., viewing a plot
only makes sense after an analysis has been performed).

• Documentation. Existing documentation tools and requirements empha-
size programmatic descriptions of the API (e.g., javadoc) or (in a caGrid
context) semantic classification of arument and return types. This level of
documentation is inadequate for the user, who requires access to full man-
ual pages for methods or tutorial-like documents summarizing appropriate
use of functions.

5


	Prelude: motivation
	Overcoming technical issues
	Adapting to a web services environment
	Future opportunities

