VanillaICE

October 5, 2010

hmm

Application of the Viterbi algorithm to copy number and/or genotype data.

Description

A wrapper for fitting the HMM.

Usage

```
hmm(object, hmm.params, ...)
viterbi(object, hmm.params, verbose=TRUE, normal2altered=1, altered2normal=1,
altered2altered=1, TAUP=1e8)
```

Arguments

object	one of the following classes derived from eSet: SnpSet, oligoSnpSet, CopyNumberSet, CNSet	
hmm.params	List. See hmm.setup	
verbose	Logical. Whether to display all messages and warnings.	
normal2altered		
	Numeric. Factor for scaling the probability of transitioning from the normal state to an altered state	
altered2normal		
	Numeric. Factor for scaling the probability of transitioning from an altered state to a normal state.	
altered2altered		
	Numeric. Factor for scaling the probability of transitioning from an altered state to a different altered state	
TAUP	Numeric. Factor for scaling the distance weighted transition probability. The transition probability is computed as	
	exp(-2 * d/TAUP), where d is the distance between two loci.	
	The default value is 1e8, but users can adjust this number to control the smoothness of the resulting HMM.	
	Additional arguments to viterbi.	

Value

An object of class RangedData.

Author(s)

R. Scharpf

References

RB Scharpf et al. (2008) Hidden Markov Models for the assessment of chromosomal alterations using high-throughput SNP arrays, Annals of Applied Statistics

See Also

hmm.setup

Examples

```
data(locusLevelData)
oligoSet <- new("oligoSnpSet",</pre>
copyNumber=log2(locusLevelData[["copynumber"]]/100),
call=locusLevelData[["genotypes"]],
callProbability=locusLevelData[["crlmmConfidence"]],
annotation=locusLevelData[["platform"]])
oligoSet <- oligoSet[order(chromosome(oligoSet), position(oligoSet)),]</pre>
hmmOpts <- hmm.setup(oligoSet,</pre>
     copynumberStates=log2(c(1, 2, 2, 3)),
     states=c("hem-del", "ROH", "normal", "amp"),
     normalIndex=3,
     log.initialP=rep(log(1/4), 4),
     prGenotypeHomozygous=c(0.99, 0.99, 0.7, 0.7))
fit <- hmm(oligoSet, hmmOpts, TAUP=5e7)</pre>
## Useful accessors for RangedData
tmp <- ranges(fit)</pre>
start(fit)
end(fit)
##Log likelihood ratio comparing likelihood of predicted state to the 'normal' state
## for each segment
fit$LLR
## the number of SNPs / nonpolymorphic loci in each segment
fit$numMarkers
```

Expand to a locus x sample matrix

hmm.setup

Wrapper for computing emission and transition probabilities needed for fitting the hidden Markov model.

Description

Computes emission probabilities and transition probabilities. See details.

Usage

```
hmm.setup(object, states = paste("state", 1:length(copynumberStates),
sep = ""), ICE = FALSE, copyNumber = TRUE, copynumberStates =
0:4, EMIT.THR = -10, scaleSds = TRUE, verbose = TRUE,
log.initial = log(rep(1/length(states), length(states))),
normalIndex = 3, prGenotypeHomozygous = numeric(),
prGenotypeMissing = rep(1/length(states), length(states)),
pHetCalledHom = 0.001, pHetCalledHet = 0.995, pHomInNormal =
0.8, pHomInRoh = 0.999, rohStates = logical(), trioHmm = FALSE, ...)
```

Arguments

object	The object must be one of the following classes inherited from eSet and defined in the R package oligoClasses: SnpSet, oligoSnpSet, CopyNumberSet, or CNSet.
states	Vector of names for the hidden states.
ICE	If the object is of class <code>oligoSnpSet</code> or <code>SnpSet</code> and the R package crlmm was used to call genotypes, the computed emission probabilities incorporate the confidence estimates of the genotype calls.
copyNumber	Logical. Whether to include information on copy number in the hidden Markov model. If the object if of class SnpSet, this argument is set to FALSE.
copynumberSta	ates
	Numerical vector with same length as the number of states. Each value corresponds to the latent copy number of the hidden state. Note that copynumber-States must be specified on the appropriate scale. If the copy number estimates have been log-transformed, the copynumberStates must be provided on the log-scale.
EMIT.THR	Single point outliers can cause the HMM to be jumpy. Emission probabilities below EMIT.THR are set to EMIT.THR.
scaleSds	Logical. For objects of class CNSet, sd estimates for total copy number are obtained by using robustSds function.
verbose	Logical. Verbose output during calculations.
log.initial	Numeric vector of initial state probabilities (log-scale) corresponding to the hidden states. Must be the same length as $states$.
normalIndex	Integer.
	states [normalIndex] should return the name of the 'normal' hidden state, which in general corresponds to copy number 2. For instance, if the states were "hemizygousDeletion", "normal", and "amplification", normalIndex is 2.

prGenotypeHomozygous		
	Numeric. The probability of a homozygous genotype call in each of the hidden states. Ignored if ICE is TRUE.	
prGenotypeMi	ssing	
	Numeric. The probability of a missing genotype for each hidden states.	
pHetCalledHom		
	Numeric. Probability of misclassifying a genotype call as heterozygous if the true genotype is homozygous. Ignored unless ICE is TRUE.	
pHetCalledHet		
	Numeric. Probability of correctly classifying a genotype call as heterozygous. Ignored unless ICE is TRUE.	
pHomInNormal	Numeric. Probability of a homozygous genotype in a region without loss of heterozygosity. Ignored unless ICE is TRUE.	
pHomInRoh	Numeric. Probability of a homozygous genotype in a 'region of homozygosity'. Ignored unless ICE is TRUE.	
rohStates	Logical vector. TRUE corresponds to a hidden states in which regions of ho- mozygosity are expected. For instance, regions of homozygosity would be TRUE for hidden states corresonding to copy-neutral region of homozygosity (as my occur in a loss of heterozygosity region) and hemizygous deletions.	
trioHmm	Logical. This option is experimental. For Father-Mother-Offspring trios, we compute emission probabilities for biparental inheritance where the genotypes are informative. The hidden states correspond to biparental inheritance or non-biparental inheritance. Regions of non-biparental inheritance can be used to quickly flag regions that are possibly de-novo deletions.	
	Ignored.	

Details

Details on the calculation of emission probabilities.

Author(s)

R. Scharpf

See Also

robustSds

locusLevelData Basic data elements required for the HMM

Description

This object is a list containing the basic data elements required for the HMM

Usage

```
data(locusLevelData)
```

robustSds

Format

A list

Details

The basic assay data elements that can be used for fitting the HMM are:

- 1. a mapping of platform identifiers to chromosome and physical position
- 2. (optional) a matrix of copy number estimates

3. (optional) a matrix of confidence scores for the copy number estimates (e.g., inverse standard deviations)

4. (optional) a matrix of genotype calls

5. (optional) CRLMM confidence scores for the genotype calls

At least (2) or (4) is required. The locusLevelData is a list that contains (1), (2), (4), and (5).

Source

A HapMap sample on the Affymetrix 50k platform. Chromosomal alterations were simulated. The last 100 SNPs on chromosome 2 are, in fact, a repeat of the first 100 SNPs on chromosome 1 - this was added for internal use.

Examples

```
data(locusLevelData)
str(locusLevelData)
```

robustSds Calculate robust estimates of the standard deviation

Description

Uses the median absolute deviation (MAD) to calculate robust estimates of the standard deviation

Usage

robustSds(x, takeLog = FALSE, ...)

Arguments

Х	A matrix of copy number estimates. Rows are features, columns are samples.
takeLog	Whether to log-transform the copy number estimates before computing robust sds
	additional arguments to rowMedians

Details

For matrices x with 4 or more samples, the row-wise MAD (SNP-specific sds) are scaled by sample MAD / median(sample MAD).

If the matrix has 3 or fewer samples, the MAD of the sample(s) is returned.

robustSds

Value

Matrix of standard deviations.

Examples

```
data(locusLevelData)
sds <- robustSds(locusLevelData[["copynumber"]]/100,
takeLog=TRUE)</pre>
```

6

Index

*Topic datasets locusLevelData, 4 *Topic manip hmm, 1 hmm.setup, 3 robustSds, 5 *Topic models hmm, 1 hmm.setup, 3 *Topic ts hmm, 1 hmm, 2, 3 locusLevelData, 4

robustSds, 4, 5

viterbi(hmm), 1